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Determining mechanism rates for gas-surface interactions through reactive Molecular Dynamics simulations
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A Finite-Rate Gas-Surface Chemistry Model m

Surface reactions now modeled similar to gas-phase

* Prediction of surface heat flux vital for weight savings
and survivability of TPS for hypersonic vehicles

» Heat flux may depend on local catalytic gas-surface
reactions (dissociated atoms recombining on the surface)
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Advances in computational chemistry enable
investigation of realistic amorphous surfaces.

0O, Formation
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N+[s]—N, Finite-Rate model
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Flux in @Atoms Created  Flux Out @ species Deleted - Predict in-situ surface structure
- Identify catalytic defects (active sites)
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