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Program goals:

1.

Devise first-principle models of the interaction of fs laser pulses with materials
(both on surfaces and inside transparent materials);
implement models in numerical codes

Develop non-perturbative ionization models and incorporate them in the codes

Conduct experiments to support and verify modeling:
e Pump-probe imaging of ablation with ultrashort probe (5 fs)
e Pump-probe imaging of ablation of microdroplets with XUV probe

Experimentally study exotic ablation situations:
 Confined microexplosions inside transparent solids and on interfaces
e Ablation with ultrashort laser pulses ~5 fs
« Ablation with fs pulses in the wavelength range 200 nm — 2.6 um
» Effects of pulse shaping in ablation



First-principle models of fs laser-matter interactions

Model #1 — modeling high-NA fs beam propagating inside a dielectric

Non-paraxial Maxwell propagator coupled with rate equations for
lonization and electron heating

Simulate first <100fs - lattice remains cold

Practical goals:

e Compute distribution of energy
absorbed inside dielectric

 Maximize absorbed energy via
Amorphous tailoring beam and pulse shapes

shell )
- Create larger voids
—> Create more extreme
pressures and temperatures

Void




Z [um]

A

Computationally challenging — need to resolve THE UNIVERSIT
significantly sub-wavelength spatial transients
(moving skin layers ~ 10 nm — thick at max. ionization)

Preliminary results in full 3D — Brute force approach: Constant grid size < Skin depth
- Full 3D simulation
- 800nm wavelength, 100fs pulse
- lonization limited at n, = 3 - 102cm™3 (~1.5 times critical density, skin depth = 175 nm)
- 32 processors, uniform 20 nm grid, 5 hours computation time

Vacuum — SiO, boundary
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Model #1 — future work THE UNIVERSITY

OF ARIZONA.

 Brute force in 3D with full ionization is impractical: ~50 years/computation
« Approaches:
— Variable (but static) grid across computational domain
— Adaptive grid
— 2D (x,z,t) - corresponds to cylindrical focusing, axial microexplosion
— 2D (r,z,t) — corresponds to 3D with azimuthal or radial polarization,
realizable through polarization beam shaping with S-plate

a) <)

- S-plate is a micro-structured optical polarization converter
- Converts linear into azimuthal or radial polarizations
- Produces large longitudinal field in focus

M. Beresna, M. Gecevicius, P. Kazansky, T. Gertus
“Radially polarized optical vortrex converter created
by femtosecond laser nanostructuring of glass”,
APL 98, 201101 (2011)

 Implement different (empirical and rigorous) ionization models in the code



Empirical ionization model based on rate =~ iE-A=s
equations for n, and T, & Drude model (Gamaly-Rode):
e Study the regime between ionization and ablation thresholds (ions are not moving)

e Scattering rate depends on electron temperature:
grows with T, at low T, then ~T, /2 near ablation threshold

» This dependence causes non-trivial dependence of Drude reflectivity on pulse fluence or
on time along the pulse
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Supporting experiments (UA) THE UNERSITY

OF ARIZONA.

Studies of ionization dynamics — regime between ionization and ablation thresholds
Measurements of transient dielectric function (SiO,)
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Supporting experiments (UA) THE UNIVERSITY

OF ARIZONA.

Studies of ionization dynamics — regime between ionization and ablation thresholds
Measurements of transient dielectric function (SiO,)
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« Ablation threshold fluence 2.1 J/cm? for 70 fs pulse

 Beam radius 8.1 um, consistent with knife-edge measurement
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Supporting experiments (UA) THE UNVERSITY

Measurements of ionization threshold — detect anomalies in transmission vs. energy
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Will conduct pump-probe measurements of reflectivity with 5 fs probe



Supporting experiments (UA)

A

THE UNIVERSITY
OF ARIZONA.

Hollow-fiber pulse compressor installed, being integrated into pump-probe setup.
Will allow transient reflectivity measurements with 5 fs resolution

and ablation measurements in the ultrahigh intensity regime
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For ultrahort pulses (<10 fs) and ultrahigh
intensities (>101* W/cm?), sub-cycle effects
In ionization become important (M. Ivanov — MBI)
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0.03 - Blue — numerical integration
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P. Hawkins, M. Ivanov, “Role of subcycle transition dynamics in high-order-harmonic generation in periodic structures”,
PRA 87, 063842 (2013)



Related question: In dielectric crystals, what

happens to the band structure in strong IR fields?
What is the effective mass of conduction band electrons?
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Pilot simulations:
- 1D periodic potential in an IR field
- Solve TDSE with 1valence and different
# of conduction bands

Results:
- Strong IR field eliminates band structure,
creates a single effective parabolic band
- Conduction band electrons behave like
free electrons with effective mass m=m,
- Harmonic generation strongly suppressed
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First-principle models of fs laser-matter interactions

Model #2 — First-principle model of surface ablation

Quantify relative contributions of Coulomb explosion and
electrostatic ablation mechanisms
0000

rTt11

Coulomb explosion: Electrons Electrostatic ablation: Electron
leave, excessive positive charge sheet pulls ions out of the material.
pushes ions out of the material.

Electrons and ions leave
Some delay between departures of simultaneously
electrons and ions

E. Gamaly, A. Rode, V. Tikhonchuk, B. Luther-Davis, “Electrostatic mechanism of ablation by femtosecond lasers”,
Appl. Surface Science 197-198, 699 (2002).

W. Roeterdink, L. Juurlink, O. Vaughan, J. Dura Diez, M. Bonn, A. Kleyn, “Coulomb explosion in femtosecond laser
ablation of Si(111)", Appl. Phys. Lett. 82, 4190 (2003).
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Model #2: Kohn & Sham model — THE UNIVERSITY
Quantum mechanics for electrons, classical mechanics for ions.

Computationally very challenging
— Can only treat 1D case with ~30 ions on a “conventional”

(but still large) computer
 Electrons interact not individually but through the overall electron density n(r)
» Driving of electrons by external field is described by vector potential A(r)
« Coulomb interaction is described by total potential V(r,t,n), which is the sum of
electron and ion potentials
Motion of individual ions is treated classically
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Compute 1D ground state (prior to arrival of laser pulse)

Ground State of Electrons and lons

0.25- ¢ lon Positions (RK)

0.2 1

step :1

~ Vi / N Al \ WA oA NL L N WY i o
R e T o LY LN TR ATWA R £ A
AT T A I Lo \ / / e N \
0.15 WA N \J N Nuf, N
AT AT IR
ET Y y

0.

—_

~ Time :0.04[fs]

0.05\-

-0.05
0.1

0.15

« Computed initial ground state (shown)
» 24 ions (red) are computed, typical distances of ~1.1 Angstroms
» Total electron probability density (blue) computed as sum of 48 electron probability densities
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1D string of ions + electrons excited by 20fs laser pulse
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1D, 2D and 3D cases are qualitatively different

r T 1D:F o< i/,

0000 v

3D: F =~ const

DFT treatment of realistic sample sizes, even in 2D, is impractical:
(800 nm)? 2D sample contains ~107 ions = 58 bytes simulation - huge

On-going work:

* Implement a semi-classical model instead
— Electrons and ions are treated as classical particles, with the addition
of a velocity-dependent potential preventing electrons falling on ions

(Erik Lotstedt, T. Kato, K. Yamanouchi, “Classical dynamics of laser-driven D3+” (PRL 106, 203001 (2011))
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(Hannover — Uwe Morgner, Milutin Kovacev, Heiko Kurz)

So far studied high harmonic generation in water microdroplets
driven by pairs of fs pulses separated by several nanoseconds

Harmonic order
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H. Kurz, D. Steingrube, D. Ristau, M. Lein, U. Morgner, M. Kovaceyv,
“High-order-harmonic generation from dense water microdroplets”, PRA 87, 063811 (2013)
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Supporting experiments Hannover
(Hannover — Uwe Morgner, Milutin Kovacev, Heiko Kurz)

Imaging of laser ablation of microdroplets in orthogonal pump-probe setup
incorporating optical and XUV probe beams
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Exotic situations of fs laser-matter interactions

Update on confined microexplosion experiments at ANU:
Creation of new phases of Si through microexplosion on Si-SiO, interface
(A. Rode, E. Gamaly, with Chris Pickard from Univ. College London)

. Void &
M et h 0 d ) compressed
Confined micro-explosion by ultrafast-laser shell

focused in the bulk of transparent material
— conservation of mass

THE AUSTRALIAN NATIONAL UNIVERSITY

e-diffraction

Motivation:

Formation of material states at extreme pressure and non
equilibrium temperature conditions in laboratory table-top
experiments

Qutcome:

* New materials:
high-pressure < ultra-hard; insulator-metal transitions

* New material phases (metastable?);

* New chemical/physical
properties of “shocked” materials

fs-laser



History of microexplosion studies

THE AUSTRALIAN NATIONAL UNIVERSITY

| — Indication on the creation of high pressure >TPa (10 Mbar) with fs-laser:

E. Glezer, E. Mazur, “Ultrafast-laser driven microexplosion in transparent materials”,
Appl.Phys. Lett. 71, 882—-884 (1997)

Il — Experimental evidence of the >3 TPa pressures in sapphire:

S. Juodkazis, et al., “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of
multimegabar pressures”, PRL 96, 166101 (2006)

lIl — Discovery of the creation of super-dense material phases inside microexplosion voids:
A. Vailionis, E. Gamaly, V. Mizeikis, W. Yang, A. Rode, S. Juodkazis,
“Evidence of superdense aluminium synthetized by ultrafast microexplosion”,
Nature Communications 2, 445 (2011)

IV — Laser-driven microexplosion on a material interface, densification of opaque materials
L. Rapp, B. Haberl, J. Bradby, E. Gamaly, J. Williams, A. Rode, “Confined microexplosion induced by ultrashort
laser pulse at SiO,/Si interface”, Appl. Phys. A 114, 33 (2014)



Phase transitions of dc-Si to metallic Si @

THE AUSTRALIAN NATIONAL UNIVERSITY
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Preparation of samples for TEM and e-diffraction

THE AUSTRALIAN NATIONAL UNIVERSITY

 Preparation of arrays of micro-explosions QS W%
~10 um under the surface, ~1 pm apart; R = ——1F
« Polishing and cutting to 100-pm thick sample
- Removal of 10-um thin surface layer with
a focused ion beam (FIB) N L R R L e
e Thinning lamella to <100 nm for TEM SRR R R
R R NT
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TEM imaging of voids on material interfaces @
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Conventional Si
diamond-cubic Si guenched from WDM state




Electron diffraction reveals new material p
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Electron diffraction at 300 kV
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TEM within a particular diffraction order shows
spatial locations of new material phases

100 nm

TEM image of void at Si/SiO, interface Bright-field image at 5.92 A bright spot



Results so far:

First observation of two new tetragonal phases of silicon:
16-atom Si-BT8 (probably metallic) and 12-atom Si-ST12 (probably narrow-band SC)

Demonstration of low kinetic barrier in non-equilibrium conditions for formation of new
metastable phases — synthesis of phases directly from WDM

BT8-Si density is 2.73 g/cm?3 at 5 GPa, which is about 17% more dense than dc-Si.
Computed density of states indicate the phase is a narrow band gap semiconductor

ST12-Si density is 2.47 g/lcm3, 6% more dense than dc-Si at ambient pressure.
Density of states indicate the phase is an indirect bandgap semiconductor with a
bandgap energy between 1.1 eV and 1.67 eV

These metastable phases are of significant interest, as they may have new
electronic and photovoltaic properties



Summary

1. First-principle modeling of fs laser-matter interactions
- Inside dielectrics: Non-paraxial Maxwell propagator coupled with ionization
- On surfaces: DFT model of ablation — computationally very challenging,
implement a simpler semi-classical model
- Sub-cycle effects in ionization with ultrashort pulses (<10 fs)
- Modifications of band structure of crystals in ultraintense laser fields

2. Supporting experiments:
- Investigations of regimes between ionization and ablation thresholds
- Measurements of transient reflectivity of ionized dielectrics using 5 fs probe pulse
- Imaging of ions created through fs ablation of microdroplets with XUV probe

3. Experimental studies of exotic ablation situations:
- Confined microexplosion inside transparent solids and on interfaces
- Creation and identification of new super-dense material phases
- Ablation with ultrashort laser pulses ~5 fs — sub-cycle ionization effects in ablation
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