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Program goals:
1. Devise first-principle models of the interaction of fs laser pulses with materials 

(both on surfaces and inside transparent materials);
implement models in numerical codes

2. Develop non-perturbative ionization models and incorporate them in the codes

3. Conduct experiments to support and verify modeling:
• Pump-probe imaging of ablation with ultrashort probe (5 fs)
• Pump-probe imaging of ablation of microdroplets with XUV probe

4. Experimentally study exotic ablation situations:
• Confined microexplosions inside transparent solids and on interfaces
• Ablation with ultrashort laser pulses ~5 fs
• Ablation with fs pulses in the wavelength range 200 nm – 2.6 m
• Effects of pulse shaping in ablation



First-principle models of fs laser-matter interactions

Model #1 – modeling high-NA fs beam propagating inside a dielectric

Non-paraxial Maxwell propagator coupled with rate equations for 
ionization and electron heating

Simulate first <100fs  lattice remains cold

Void

Amorphous 
shell

Practical goals:
• Compute distribution of energy 

absorbed inside dielectric 
• Maximize absorbed energy via 

tailoring beam and pulse shapes
 Create larger voids
 Create more extreme 

pressures and temperatures



Computationally challenging – need to resolve 
significantly sub-wavelength spatial transients 
(moving skin layers ~ 10 nm – thick at max. ionization)

Preliminary results in full 3D – Brute force approach: Constant grid size < Skin depth
- Full 3D simulation
- 800nm wavelength, 100fs pulse 
- Ionization limited at ݊௘ ൌ 3 ∙ 10ଶ଻cmିଷ (~1.5 times critical density, skin depth = 175 nm)
- 32 processors, uniform 20 nm grid, 5 hours computation time

Vacuum – SiO2 boundary



Model #1 – future work

• Brute force in 3D with full ionization is impractical: ~50 years/computation
• Approaches:

– Variable (but static) grid across computational domain
– Adaptive grid
– 2D (x,z,t) - corresponds to cylindrical focusing, axial microexplosion
– 2D (r,z,t) – corresponds to 3D with azimuthal or radial polarization, 

realizable through polarization beam shaping with S-plate 

M. Beresna, M. Gecevicius, P. Kazansky, T. Gertus
“Radially polarized optical vortrex converter created 

by femtosecond laser nanostructuring of glass”, 
APL 98, 201101 (2011)

- S-plate is a micro-structured optical polarization converter
- Converts linear into azimuthal or radial polarizations
- Produces large longitudinal field in focus

• Implement different (empirical and rigorous) ionization models in the code



Empirical ionization model based on rate
equations for ne and Te & Drude model (Gamaly-Rode):
• Study the regime between ionization and ablation thresholds (ions are not moving)

• Scattering rate depends on electron temperature:
grows with Te at low Te, then ~Te

-3/2 near ablation threshold

• This dependence causes non-trivial dependence of Drude reflectivity on pulse fluence or 
on time along the pulse 

E. Gamaly, A. Rode, “Transient optical properties of dielectric excited by ultra-short laser pulse” (Submited)
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Supporting experiments (UA)
Studies of ionization dynamics – regime between ionization and ablation thresholds
Measurements of transient dielectric function (SiO2)
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Supporting experiments (UA)
Studies of ionization dynamics – regime between ionization and ablation thresholds
Measurements of transient dielectric function (SiO2)

• Ablation threshold fluence 2.1 J/cm2 for 70 fs pulse

• Beam radius 8.1 m, consistent with knife-edge measurement

B. Stuart et al. (LLNL), JOSAB 13, 459 (1996)
O. Uteza et al. (U. Marseille, INRS Quebec), Appl. Phys. A 105, 131 (2011)



Supporting experiments (UA)
Measurements of ionization threshold – detect anomalies in transmission vs. energy
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• Measure transmission anomalies in the range 0.2 – 1.0 J/cm2

• Data is difficult to interpret

• Will conduct pump-probe measurements of reflectivity with 5 fs probe

Anomaly

Ionization



Supporting experiments (UA)
Hollow-fiber pulse compressor installed, being integrated into pump-probe setup.
Will allow transient reflectivity measurements with 5 fs resolution
and ablation measurements in the ultrahigh intensity regime

• Neon-filled 100 m diam. capillary, 1.5 bar.

• Max. compressed output: 0.68 mJ

• Min. pulse duration: 3.7 fringes = 5.1 fs

Spectrum

Autocorrelation



For ultrahort pulses (<10 fs) and ultrahigh 
intensities (>1014 W/cm2), sub-cycle effects 
in ionization become important (M. Ivanov – MBI)

Need non-perturbative treatment

MPI Avalanche

Sub-cycle ionization rate:
- Blue – numerical integration
- Green – approx. analytical formula
- Red – Gaussian fit

Work in progress: 
Calibrate analytical formula against   
absolute cycle-averaged values 
measured for SiO2, for incorporation into 
the Maxwell code
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P. Hawkins, M. Ivanov, “Role of subcycle transition dynamics in high-order-harmonic generation in periodic structures”, 
PRA 87, 063842 (2013)



Related question: In dielectric crystals, what 
happens to the band structure in strong IR fields?
What is the effective mass of conduction band electrons?
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Strong Bragg reflectionsStrong Bragg reflections

Inter‐band transitions kill reflectionsInter‐band transitions kill reflections

Pilot simulations: 
- 1D periodic potential in an IR field 
- Solve TDSE with 1valence and different 

# of conduction bands

Results:
- Strong IR field eliminates band structure,

creates a single effective parabolic band
- Conduction band electrons behave like

free electrons with effective mass m=m0
- Harmonic generation strongly suppressed



First-principle models of fs laser-matter interactions

Model #2 – First-principle model of surface ablation

Quantify relative contributions of Coulomb explosion and 
electrostatic ablation mechanisms

+ + + ++

+ + + ++

‐ ‐‐ ‐ ‐

+ + + ++

Coulomb explosion: Electrons 
leave, excessive positive charge 
pushes ions out of the material.

Some delay between departures of 
electrons and ions

Electrostatic ablation: Electron 
sheet pulls ions out of the material.

Electrons and ions leave 
simultaneously

E. Gamaly, A. Rode, V. Tikhonchuk, B. Luther-Davis, “Electrostatic mechanism of ablation by femtosecond lasers”, 
Appl. Surface Science 197-198, 699 (2002).
W. Roeterdink, L. Juurlink, O. Vaughan, J. Dura Diez, M. Bonn, A. Kleyn, “Coulomb explosion in femtosecond laser 
ablation of Si(111)”, Appl. Phys. Lett. 82, 4190 (2003). 



• Electrons interact not individually but through the overall electron density n(r) 
• Driving of electrons by external field is described by vector potential A(r)
• Coulomb interaction is described by total potential V(r,t,n), which is the sum of 

electron and ion potentials
• Motion of individual ions is treated classically

Model #2: Kohn & Sham model –
Quantum mechanics for electrons, classical mechanics for ions.
Computationally very challenging 
– Can only treat 1D case with ~30 ions on a “conventional” 
(but still large) computer



Compute 1D ground state (prior to arrival of laser pulse)

• Computed initial ground state (shown)
• 24 ions (red) are computed, typical distances of ~1.1 Angstroms
• Total electron probability density (blue) computed as sum of 48 electron probability densities



1D string of ions + electrons excited by 20fs laser pulse

At 20 fs

At 36 fs – ions start to leave

Forces acting on the edge ion –
pushing by other ions dominates
over pulling by electrons

Coulomb explosion wins in 1D



1D, 2D and 3D cases are qualitatively different
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DFT treatment of realistic sample sizes, even in 2D, is impractical:
(800 nm)2 2D sample contains ~107 ions  518 bytes simulation - huge

On-going work:

• Implement a semi-classical model instead 
– Electrons and ions are treated as classical particles, with the addition

of a velocity-dependent potential preventing electrons falling on ions

+ + + ++

‐‐ ‐ ‐‐ 2D: ܨ ∝ ଵ ௥⁄

3D: ܨ ൎ ݐݏ݊݋ܿ

(Erik Lotstedt, T. Kato, K. Yamanouchi, “Classical dynamics of laser-driven D3+” (PRL 106, 203001 (2011))
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H. Kurz, D. Steingrube, D. Ristau, M. Lein, U. Morgner, M. Kovacev,

“High-order-harmonic generation from dense water microdroplets”, PRA 87, 063811 (2013)

• Pump intensity: 3.7 x 1014 W/cm2  ~ 40 J/cm2

• Pump-probe delay: 1 ns
• Harmonics of up to the 27th order generated

Supporting experiments 
(Hannover – Uwe Morgner, Milutin Kovacev, Heiko Kurz)
So far studied high harmonic generation in water microdroplets
driven by pairs of fs pulses separated by several nanoseconds
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Supporting experiments 
(Hannover – Uwe Morgner, Milutin Kovacev, Heiko Kurz)

Imaging of laser ablation of microdroplets in orthogonal pump-probe setup 
incorporating optical and XUV probe beams



Exotic situations of fs laser-matter interactions
Update on confined microexplosion experiments at ANU:
Creation of new phases of Si through microexplosion on Si-SiO2 interface
(A. Rode, E. Gamaly, with Chris Pickard from Univ. College London) 

Method: 
Confined micro-explosion by ultrafast-laser 
focused in the bulk of transparent material

– conservation of mass

Motivation:
Formation of material states at extreme pressure and non 
equilibrium temperature conditions in laboratory table-top 
experiments

Outcome:
• New materials:

high-pressure  ultra-hard; insulator-metal transitions
• New material phases (metastable?);
• New chemical/physical

properties of “shocked” materials

Void & 
compressed 

shell

fs-laser

NA=1.45

e-diffraction



History of microexplosion studies
I – Indication on the creation of high pressure >TPa (10 Mbar) with fs-laser:

E. Glezer, E. Mazur, “Ultrafast-laser driven microexplosion in transparent materials”,
Appl.Phys. Lett. 71, 882–884 (1997)

II – Experimental evidence of the >3 TPa pressures in sapphire:

S. Juodkazis, et al., “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of 
multimegabar pressures”,  PRL 96, 166101 (2006)

III – Discovery of the creation of super-dense material phases inside microexplosion voids:
A. Vailionis, E. Gamaly, V. Mizeikis, W. Yang, A. Rode, S. Juodkazis,
“Evidence of superdense aluminium synthetized by ultrafast microexplosion”,
Nature Communications 2, 445 (2011)

IV – Laser-driven microexplosion on a material interface, densification of opaque materials
L. Rapp, B. Haberl, J. Bradby, E. Gamaly, J. Williams, A. Rode, “Confined microexplosion induced by ultrashort 
laser pulse at SiO2/Si interface”, Appl. Phys. A 114, 33 (2014) 



Phase transitions of dc-Si to metallic Si

Si‐I
(diamond cubic)

Si‐II (body‐centered tetragonal)
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Si‐XI (body‐centered orthorhombic)

13 GPa

Si‐V (simple hexagonal)
15 GPa

Si‐VI (orthorhombic)
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Si‐VII (hexagonal close packed)
42 GPa

Si‐X (face‐centered cubic)
79 GPa
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Si‐III
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Si-IV 
(hexagonal diamond)200°C
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750°C

Si-VIII 
(tetragonal)

Rapid unloading from 14.8 GPa

Si-IX
(tetragonal)

Rapid unloading from 12 GPa

Temperature

Si-## > 250 GPa
fcc–>bcc ???
[McMahan, PRB 
27,3235 (1983)]

Si-## > 250 GPa
fcc–>bcc ???
[McMahan, PRB 
27,3235 (1983)]



Preparation of samples for TEM and e-diffraction

• Preparation of arrays of micro-explosions 
~10 µm under the surface, ~1 µm apart;

• Polishing and cutting to 100-µm thick sample

• Removal of 10-µm thin surface layer with
a focused ion beam (FIB)

• Thinning lamella to <100 nm for TEM

0.8 µm



TEM imaging of voids on material interfaces
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Electron diffraction reveals new material phases

300 nmSi

SiO2 void
laser

Conventional 
diamond-cubic Si

Si 
quenched from WDM state 



Electron diffraction reveals new material phases

Rhombohedral

Hexagonal diamond

Tetragonal

Diamond cubic

0.3 µm

45 J/cm2

Si

SiO2

Electron diffraction at 300 kV 
data #B751



TEM within a particular diffraction order shows 
spatial locations of new material phases

SiO2

Si

TEM image of void at Si/SiO2 interface Bright-field image at 5.92 Å bright spot



Results so far:

• First observation of two new tetragonal phases of silicon: 
16-atom Si-BT8 (probably metallic) and 12-atom Si-ST12 (probably narrow-band SC) 

• Demonstration of low kinetic barrier in non-equilibrium conditions for formation of new 
metastable phases – synthesis of phases directly from WDM

• BT8-Si density is 2.73 g/cm3 at 5 GPa, which is about 17% more dense than dc-Si.
Computed density of states indicate the phase is a narrow band gap semiconductor

• ST12-Si density is 2.47 g/cm3, 6% more dense than dc-Si at ambient pressure. 
Density of states indicate the phase is an indirect bandgap semiconductor with a 
bandgap energy between 1.1 eV and 1.67 eV 

• These metastable phases are of significant interest, as they may have new 
electronic and photovoltaic properties 



Summary
1. First-principle modeling of fs laser-matter interactions

- Inside dielectrics: Non-paraxial Maxwell propagator coupled with ionization
- On surfaces:  DFT model of ablation – computationally very challenging,    

implement a simpler semi-classical model
- Sub-cycle effects in ionization with ultrashort pulses (<10 fs)
- Modifications of band structure of crystals in ultraintense laser fields 

2. Supporting experiments:
- Investigations of regimes between ionization and ablation thresholds
- Measurements of transient reflectivity of ionized dielectrics using 5 fs probe pulse
- Imaging of ions created through fs ablation of microdroplets with XUV probe 

3. Experimental studies of exotic ablation situations:
- Confined microexplosion inside transparent solids and on interfaces
- Creation and identification of new super-dense material phases
- Ablation with ultrashort laser pulses ~5 fs – sub-cycle ionization effects in ablation


