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Outline
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» Kinetic Theory
» Boltzmann Equation
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o Kernel Density Estimation

@ Distributional Monte Carlo

» DMC-KDE
» DMC-BGK

@ A Fast Solver for the Boltzmann Equation
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-
Background

@ The Direct Simulation Monte Carlo (DSMC) method is popular for
treatment of flows with continuum break down

@ Such flows are important in hypersonic aerodynamics and micro-scale
flows

@ DSMC has limitations due to its nonphysical representation of the
velocity distribution function (point measure)

@ We seek to develop distributional methods for stronger convergence
and reduced variances
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-
Blunt Body Example

@ Two ways to physically describe a gas

» Macroscopic — Continuum Fluid Equations
» Microscopic — Kinetic Theory

o Consider the hypersonic flow field around a blunt body

M~ O (10-15)

AALIT
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-
Why Kinetic Theory?

@ Regions where continuous equations may be invalid:

M ~ O(10-15)
—

@ Large portions of the flow field may be in local thermodynamic
equilibrium, but the non-equilibrium effects of the small regions ripple
throughout the domain

@ Microscopic representation of flow field is required to accurately
capture the physics AT

P P AT

1
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R ——
The Kinetic Description of Gas

@ Gas consists of particles that most of the time do not interact.
@ Each particle is associated with a velocity and a position.

@ The state of gas is described using the molecular velocity distribution
function f(t, X, V).

= f(t,X,V)dXdu gives the number of molecules contained in a box of
size dX x du of the physical space

AALIT
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Macroscopic Considerations

@ Most thermodynamic quantities can be written as expectation values
(weak form) of bounded and continuous functions, or moments of the
velocity distribution function; e.g. density, bulk-velocity, temperature,
stress-tensor, and energy flux.

@ The availability of the velocity distribution values (strong form) may
facility faster and more accurate deterministic solutions
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Relaxation Process

@ As molecules collide and exchange energy, distribution of their
velocities approaches the Maxwellian equilibrium distribution

. n |V — id(t,%)|?
f = — _

(V) = GrRTY7 eXp( 2RT )

@ The gas is in the state of continuum if its velocity distribution
approaches the Maxwellian distribution.

e The Maxwellian distribution is defined by density n, bulk velocity g,
and temperature T.
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Boltzmann Equation

@ Governing equation of Kinetic Theory
@ Describes the evolution of particle energy PDF

@ For unexcited monatomic gas, may examine velocity PDF

9., L 0, = 0 .. -
af(r,c,t)—i—c'ﬁf(r,c,t)—FF-%f(r,c,t)—J[f](r,c,t)

where f (7, ¢, t) is the probability of finding a particle of gas at time

t, at point ¥, moving with velocity C.

AALIT
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Relation to Continuum Egs.

@ Taking appropriate moments of the BE yields conservation equations
for mass, momentum, and energy

o Hilbert expansion: f = fj(1+® + &2 +...)

» For f = fyy, — Euler Equations
» Including 1% perturbation — Navier-Stokes Equations
» Higher order terms yield Burnett, Super Burnett, etc.
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The Spectrum

Metric of Validity of Continuum and Equilibrium Hypotheses:

Boltzmann Equation %

4

Navier-Stokes Collisit
Equations Boltzmann E

Euler
Equations

———— 1
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fia Local Knudsen Molecular
Number Flow
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]
Problem with Hilbert's 6th Problem?

o Hilbert called to develop “mathematically the limiting processes ...
which lead from the atomistic view to the laws of motion of continua”

@ Contemporary research interpretation: passage from the kinetic theory
of Boltzmann to the continuum theory of Euler as the Knudsen
number K, — 0.

@ References:

» “From Boltzmann to Euler,” M. Slemrod, Computers and Math with
Appl, 2012

» “Hilbert's 6th Problem,” Gorban and Karlin, Bulletins of Am Math
Soc., (2014)

» “The Problem with Hilbert's 6th Problem,” M. Slemrod, Math Model.
Nat. Phenom. (2015)

» “Famous Fluid Equations are Incomplete,” Mathematical Physics
Review, Quanta Mag., Jul 21, 2015
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Direct Simulation Monte Carlo

@ Developed by Bird ¢.1963, consistency with BE established in 1980s,
applicable to dilute gases

@ Stochastic simulation of a fraction of the particles, with each
representing N /N, actual particles

@ Uncoupling of molecular convection and collisions over small time
steps

@ Representative collision pairs selected and collisions computed
@ Molecules convected along their velocity vector

@ Simulation evolved multiple times to reduce statistical scatter

AL
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Uncoupling Principle

@ Boltzmann Equation in absence of external forces:
0
—|[f] = —Df + Jf
prid +

@ The uncoupling of convection and collision over At

f=(1— AtD)(1+ Atd)fy + O(AL?)

AL

1
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-
Challenges with DSMC

e Significant Variation in Solution (Scatter)

ood
——DSMC

0035 = = = Naviei-Stokes|

oosf

0025

(588
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1
;
i

o0 o N

0015 ‘. \

@ Error Estimation

o Computational Expense
2R
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R ——
DSMC Representation of the VDF

@ As each simulated particle has a single velocity, within a given cell the
VDF is represented as a point measure approximation

Np
1 A
F () :EZo(ﬁ—a)

@ The assumption W = N/N, = O(108) particles each possess the
same velocity is nonphysical

@ In regions of low density this assumption exaggerates the effect of
collisions and increases the fluctuations in the solution

@ Assumption limits DSMC to weak converge
AL
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R ——
A DSMC 2-D Example

Pre-collision lllustration

Pre~Collision Velocity Density Function
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]
DSMC Simulated Collision

Post-collision lllustration

Post-Collision Velocity Density Function
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N —
Distributional Monte Carlo

@ As each simulated particle represents a large number of actual
particles, allow each particles velocity to be distributed and possess its
own VDF, f;

@ Overall VDF given by

Np
(&) = 3 (@)
Pri=1

@ Treat collisions between particle pairs as a space homogeneous
relaxation of the combined 2W actual particles they represent

Particle A Particle 8
Distribution Function Distribution Function

AALIT
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N
Kernel Density Estimation (KDE)

@ Process for estimating PDF from discrete samples

F(x;h) = NhZK< )

o The L2 kernel function satisfying

/K(x)dx:l, /xK(x)dx:O

@ Examples of kernel functions

1
_J 3 X<t 1 2
K(X)_{o X >1 K = oo (-3)
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N
KDE Simulation 1/4

1(x)
o
T
1
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BN
KDE Simulation 2/4
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KDE Simulation 3/4
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KDE Simulation 4 /4
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N
DMC-KDE

@ Particle VDFs are of fixed functional form
1 &
f= E;ﬁ

I . 77
f =k ()

@ Mean velocity allowed to vary, but kernel function/bandwidth fixed

@ On the basis of physical reasoning we choose a Gaussian kernel for K

-3/2 _laP
(2m) exp ( 5
1

f 32
T = — Tes
32N, ‘

K (&)

@ Choosing h(N,) s.t. limp, o h(N,) =0 %A“[
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N
A DMC-KDE 2-D Example

@ Pre-collision: actual particles represented by one simulated particle no
longer possess the same velocity, but are in translational equilibrium
as a collection

Pre=Collision Velocity Density Function

004
16 e Simulated Parlicle B
Particles/Velocity 0.035
14 Vectors Represented
by Parlicle B > 203
12
T 0.025
1 LN
Direction of Mean Velocity =" 0.02
08} [ Simulated Parficle A
= 0015
08 -
Direction of Mean Velocity
04 0.01
Actual
4 Particles/Velocity
02| . Vectors Represented 0.005
by Particle A
o
0 02 04 06 08 1 12 14 16

Aihua W Wood (AFIT/ENC) DMC Boltzmann AFOSR Aug 2015 28 / 56



]
DMC-KDE Simulated Collision

@ Post-collision mean velocities determined using same stochastic rules
as Nanbus method

Post-Coliision Velocity Density Function
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-
Convergence of DMC-KDE

o Preserves Weak Convergence in L' (probability measure)

Jim - lim s ¢ () (¢)de = . ¢(c)f(c)dc

@ Strong convergence in L™

lim  lim ‘?—fH ~0

At—0 Np—o0

@ Pointwise convergence for bounded solutions

lim lim (&) = f(?)

At—0 Np—o0
for all & € RS, ZFAFIT
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-
DMC-KDE Summary

@ Analogous to applying a kernel density estimator to DSMC

@ Distribution function is directly obtained

» Stochastic Solver vs. Stochastic Simulator
» Cost of evaluating distribution function at M points is O (MN,)
» Fast Gaussian Transform can be used to reduce to O (M + N,)

@ Strong convergence is achieved
o DMC-KDE employs fixed PDFs thus is not fully distributional

AL
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Essence of DMC

@ Seek a fully distributional method with collision selection criteria and

collision modeling that fully incorporate non-singular particle velocity
distributions

» allow for non-Maxwellian particle distributions
@ For near-Maxwellian distributions, the collision selection criteria from
DMC-KDE provides fair approximations
@ Treat collision interactions “distributionally”

> apply space homogeneous relaxation process on the joint distribution
function of the 2W particles the two simulated particles represent
> evolve as appropriate

AT
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A DMC 2-D Example

Each particle possesses a VDF

Pre-Collision Velocity Density Function
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]
DMC Simulated Collision

Collision interactions computed as a relaxation toward equilibrium (for the
simulated pair)

Simulated Particle B 4

Ac!ua\ Farticles/Velocity
ors Represented by
P:lmc\e B

Direction of Mean Velocity

Simulated Particle A

Actual Particles/Velocity
Vectors Represented by
Farticle A 1
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02 04 06 OS 1 12 14 16
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-
DMC Strong Convergence

If f € L is a solution of the space homogeneous BE at t = t,
then £% of DMC converges in L™ to fk:

m |[f—f| =o0.

li
Np—o0
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R ——
A DMC Bhatnagar-Gross-Krook Approximation

o To facilitate numerical demonstration of the DMC framework, a
scheme employing the BGK approximation was developed

@ Distribution computed using space homogeneous BGK equation

@ Deterministic collision modeling facilitated by distributed velocities

» Point measure based SPM (e.g. DSMC) could not sample all possible
outcomes

@ Potential drastic effects on variance w/ removal of one stochastic
element

Theorem: Let f be the solution of Boltzmann equation with smooth
initial data fy, f the DMC solution. Then ||f — f||;1 — 0, as
Nsim — 0, At — 0 :
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-
The Bobylev-Krook-Wu Solution

@ First known closed form solution to the space homogeneous BE
@ Specific to Maxwell molecule
@ Spherically symmetric solution

. 1 sl 1—r () (8 3
F@0= ) 2P (—QT@)) b= (2— 3
T()=1— He—At
ve o]
f 1 — cos (9)2) db
A=

where,

-
2
@ Present work utilizes § = %
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Normalized Moments

@ Bobylev solution

e DSMC:

e DMC-KDE:

_ —»2n 2n
zn (1) = 2n+1 HZ (£) + cah

@ DMC-BGK moments computed using simple quadrature
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Normalized Moments Compared

O 100 simulated particles, 600 run ensemble, Av =2/3

Nanbu DSMC DMC-BGK
[==7 == =7y iz, 7, NanbUw < oz, Nanbu ... 2, Nanou| [—2, ===z, vz, ——z, DMC-BGK - = -z, DMC-BGK ... 2, DMC-8G
13 : : : ; o : - : :

1l | 105F —
URRT 1 .
5 5
; :
s ! =
el o
& 8
=09 T
5 5
Zos =

07 q

o7 1 065f 1

: : : : % 2 4 6 8 i
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N —
Total Variation

@ Total variation:

10
V () :/0 124, (1)| dt

@ Compared to Nanbu-DSMC and DMC-KDE, DMC-BGK shows

@ marked reduction of variance
@ superior energy conservation
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]
Variation of Second NM

@ Nanbu-DSMC/DMC-KDE/DMC-BGK

Var(zz)

107 I | | | I
o 50 100 150 200 250
Number of Samples

@ Four orders of magnitude reduction in total variation obtained for z; through
Z4
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L' Error Compared

@ 100 run ensemble, Av =2/3

DMC-KDE DMC-BGK

AT
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-
DMC Summary

@ DMC provides 15t stochastic particle method utilizing distributed
velocities

» No restriction on method of computing collision outcomes
o DMC-KDE turns a Boltzmann simulator into a Boltzmann solver
» Strong convergence
» Direct computation/visualization of distribution function
» No variance reduction
@ DMC-BGK employs a deterministic method for collision outcomes

» Hybrid stochastic-deterministic method
» Substantial improvement in accuracy and variance reduction
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Solving the Boltzmann Collision Integral

Development of a fast deterministic solver for the Boltzmann equation
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Challenges in solving the Boltzmann Equation numerically

. . . 1 , ,
e Direct numerical evaluation takes O(N3) operations each time step,
where N is the number of velocity points.

e A 2 GHz processor will use about 50 seconds if N = 10% and
about 1.59E43 years if N = 10°.

@ Approaches to solving the Boltzmann equation:

» Use HPCGs.

» Use efficient numerical techniques (velocity discretization, integration,
and methods for massive parallelization.)

» Approximations to the Boltzmann equation must be used when
appropriate.

» Fastness must balance numerical errors.

AL
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DIStelgToya T MO N S B discontinuous Galerkin discretization

Galerkin discretization in velocity variable

@ Choose a rectangular region K and chop it uniformly into little cells
K;.
J

@ The Galerkin approximation to the solution of the Boltzmann
equation on each cell Kj is of the form

F(t.%.0)k = D fij(t. 2)¢h(7) .
i=1

@ Substituting this into J[f] and hit the result by a basis function and
integrate over K;:

0 N S -
RN B =,
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DIStelgToya T MO N S B discontinuous Galerkin discretization

Galerkin projection of the collision operator

@ where:

¢, // (t, X, V)f W)A(V, vi; ¢)dvy dV,

@ and the term

, 27 by . .
aw. o) =& [ [T @)+ o) - 6 - )b abe.
| 1
o A(V,V4; ¢) is independent of time and can be precomputed.
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DIStelgToya T MO N S B discontinuous Galerkin discretization

Properties of the collision kernel

@ Theorem 1. Let operator A(V, vi; ¢J,) be defined by (1) with all gas
particle having the same mass and potential of the particle interaction
being spherically symmetric. Then A(V, vi; ¢}) is symmetric with
respect to vV and vi, that is

AV, Vi ¢)) = AL, Vi d]) WV, vi € R3
Also,
AV, 7, ¢}) =0 Vv eR?

e Theorem 2. Let operator A(V, vi; qﬁ{) be defined by (1) and let
potential of molecular interaction be dependent only on the distance
between the particles. Then V¢ € R3,

AV +Evi+ & (i - €)) = AV, vi; ¢7)
l.e, A(V, vi; @) is invariant with respect to a shift.

AT
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[DISCET AT MR N E I Main description of the methods

Derivation of the methods

1. Approximate f(t, X, V) as a sum of Maxwellian distributions.

f(t, X, V) ZfM(txv)

The density estimation of solutions f(t, X, V) can be done by applying
Expectation Maximization Algorithm (EMA).
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[DISCET AT MR N E I Main description of the methods

Derivation of the methods
1. Approximate f(t, X, V) as a sum of Maxwellian distributions.

f(t, X, V) ZfM(txv)

04 n
0.35
03
u
025
02
015
01 T
005/ \
% 3 2 1 0 1 2 3

The density estimation of solutions (¢, X, V) can be done by applyiﬁg;A“T
Expectation Maximization Algorithm (EMA).
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[DISCET AT MR N E I Main description of the methods

Derivation of the methods
1. Approximate f(t, X, V) as a sum of Maxwellian distributions.

P
F(6,%,7) = fu(t,%,7).
i=1

n=nl+n2

u2
035
03
025 ul
02
015
01
T1 T2
005
% 3 2 1 [ 1 2 3

The density estimation of solutions (¢, X, V) can be done by applyiﬁg;A“T
Expectation Maximization Algorithm (EMA).
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[DISCET AT MR N E I Main description of the methods

Derivation of the methods (cont.)

2. Rewrite DG projection of the B.C.| in convolution form.

Using the invariant property of A(vy, V; gﬂ,) with respect to a shift, we can
re-write the collision integral as:

A

HE) = / / F(£,%, 7 — (8,5, V1 — EA(Vh, 7: 65)dvd s

where {: & is the vector that connects the centers of the element K,
(cell in the center) and the element K;.
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4T e o ilve msiads
Derivation of the methods (cont.)

3. Replacing the density estimation expression of f(t,x, V) into the

—

formulation of /;(£), we obtain:

€)= wism // (Z fun, (8, %,V — 5)) ( > fun (8,7, — 5))A(v17 Vi ¢7)dvdi

i'=1 i=1

p
-5 //fM/,,(t,%,\’/'—f) fur,, (£.%, 71 — E)A(, 7: 6%) didvi
3J3

i’#i”

i i =1

8 P i, =
:w,'AV Z (Ii (5))’

I'/#i”

s
it =1

Where Iiili”(g) = //fMH (ta )?7 V- g) fM,‘// (ta )?; ‘71 - g)A(Vl; ‘7; ¢f) dVdVl .
3J3
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[DISCET AT MR N E I Main description of the methods

Derivation of the methods (cont.)

4. Diagonalization of A(V, v1; ¢f).

@ In the discrete velocity space, kernel A(V, vq; ¢¢) can be represented
by an N x N symmetric matrix. Thus we can compute its
Eigen-Decomposition using available software such as LAPACK
and/or PROPACK:

N
AV, Vi 65) = > MWV () + €6

k=1
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4T e o ilve msiads
Derivation of the methods (cont.)

4. Diagonalization of A(V, v1; ¢f).
@ In the discrete velocity space, kernel A(V, vq; ¢¢) can be represented
by an N x N symmetric matrix. Thus we can compute its

Eigen-Decomposition using available software such as LAPACK
and/or PROPACK:

N
A(V, vi; ¢7) Z)\kwk(v W/ (Vi) + epc
-1

@ We can further approximate A(\7, V1; ) using M-pairs of eigenvalues
and eigenvectors:
M

A(‘—/»7 Vi ¢IC) — Z Ak\llk(V)W;(T(\/_i) + €p6 + Etruncation
k=1
Sl Nl
where equncation = O ( %
i=1 !
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[DISCET AT MR N E I Main description of the methods

Derivation of the methods (cont.)
5. Substituting the Eigen-Decomposition of A(V, v1; ¢§) into I/
M
PO = [ [ a7, (0O (;wmwk(m) dvdvi

_Z,\k(/f,\,,, (t, vV — )\Uk(v)dv) (Af/v/,.,,(f,v_i —E)‘Uk(vi)dvi).
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[DISCET AT MR N E I Main description of the methods

Derivation of the methods (cont.)

5. Substituting the Eigen-Decomposition of A(V, v1; ¢§) into I/
M
17 (€) = fr, (£, 7 — &) far,, (£, i — &) AV (V)W (Vi) | dvdvi
[ [ 075 - 8) (VD) ) a7
_ZAk(/fM, (7 — )\Uk(v)dv) (AfMi,,(t,v’i V(v )dvl)
Therefore,

o= § ;Ak(/fnﬂ, £,V — &)W, )dv)(ﬁwa(t,vE—f)wk(vi)dvi>. (2)
i =1
ZFAFIT
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[DISCET AT MR N E I Main description of the methods

Derivation of the methods (cont.)

5. Substituting the Eigen-Decomposition of A(¥, vy; ¢¢) into 1/
st M
7@ = [ [ iy (6.7 = 9 g (0 - (S Aw@wiat)) ava
k=1

_Z,\k(/f,v,, (t, v — )\Uk(v)dv) (AfM,.,,(t,\?l (v )dV1)

Therefore,

o= § ;Ak(/fnﬂ, £,V — &)W, )dv)(ﬁf%,/(t,vﬁ—E)w(ﬁ)m). (2)

/' i"’=1
6. Goal: To compute the convolution integrals accurately!
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4T e o ilve msiads
Pre-computed Ansatz: F(&, T)

@ To optimize the evaluation of (2), we design the following object:

—

Fu(€, T) = ﬁ zexp (—M) W (W)dw .

@ Therefore,

/fM(t, 7 ()7 = nFu(E+ 5, T).

3

That is, to obtain the values of the convolution integrals, we just
need to perform interpolations for Fi (&, T).

@ The values of Fk(g, T) can be computed accurately using adaptive
quadrature with high Gauss order. J—
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Evaluating B.C.| takes O(N?) flops each iteration

1. Perform DG interpolations of Fk(f_: T) at N different velocity points.
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Description of the methods Floating point operations

Evaluating B.C.| takes O(N?) flops each iteration

1. Perform DG interpolations of Fj (£, T) at N different velocity points.
= It takes O(N) operations for the DG interpolations.

2. These operations are repeated for each of the N eigenvectors used in
relation (2).
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Description of the methods Floating point operations

Evaluating B.C.| takes O(N?) flops each iteration

1. Perform DG interpolations of Fk(é: T) at N different velocity points.
= It takes O(N) operations for the DG interpolations.

2. These operations are repeated for each of the N eigenvectors used in
relation (2).

Overall, it takes O(N?) operations.

Note: The time of performing the projection algorithm << the time of
performing DG interpolations for N eigenvectors as N is large.
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Advantages & Disadvantages of the new method

Advantages:

o Fast method of order O(N?), where N is the total number of velocity
points.

@ Can be implemented using parallelization.

Disdvantages:

@ Interpolation errors.

@ Requires large storage O(MN?), where M is a fraction of N, to store
the values of the pre-computed ansatz Fy

AALIT
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