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Background

The Direct Simulation Monte Carlo (DSMC) method is popular for
treatment of flows with continuum break down

Such flows are important in hypersonic aerodynamics and micro-scale
flows

DSMC has limitations due to its nonphysical representation of the
velocity distribution function (point measure)

We seek to develop distributional methods for stronger convergence
and reduced variances
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Blunt Body Example

Two ways to physically describe a gas
I Macroscopic −→ Continuum Fluid Equations
I Microscopic −→ Kinetic Theory

Consider the hypersonic flow field around a blunt body
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Why Kinetic Theory?

Regions where continuous equations may be invalid:

Large portions of the flow field may be in local thermodynamic
equilibrium, but the non-equilibrium effects of the small regions ripple
throughout the domain

Microscopic representation of flow field is required to accurately
capture the physics
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The Kinetic Description of Gas

Gas consists of particles that most of the time do not interact.

Each particle is associated with a velocity and a position.

The state of gas is described using the molecular velocity distribution
function f (t,~x , ~v).

⇒ f (t,~x , ~v)d~xd~u gives the number of molecules contained in a box of
size d~x × d~u of the physical space
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Macroscopic Considerations

Most thermodynamic quantities can be written as expectation values
(weak form) of bounded and continuous functions, or moments of the
velocity distribution function; e.g. density, bulk-velocity, temperature,
stress-tensor, and energy flux.

The availability of the velocity distribution values (strong form) may
facility faster and more accurate deterministic solutions
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Relaxation Process

As molecules collide and exchange energy, distribution of their
velocities approaches the Maxwellian equilibrium distribution

fM(~v) =
n

(2πRT )3/2
exp
(
−|~v − ~u(t, ~x)|2

2RT

)

The gas is in the state of continuum if its velocity distribution
approaches the Maxwellian distribution.

The Maxwellian distribution is defined by density n, bulk velocity ~̄u,
and temperature T .

Aihua W Wood (AFIT/ENC) DMC Boltzmann AFOSR Aug 2015 9 / 56



Boltzmann Equation

Governing equation of Kinetic Theory

Describes the evolution of particle energy PDF

For unexcited monatomic gas, may examine velocity PDF

∂

∂t
f (~r ,~c , t) + ~c · ∂

∂~r
f (~r ,~c , t) + ~F · ∂

∂~c
f (~r ,~c , t) = J [f ] (~r ,~c , t)

where f (~r ,~c , t) is the probability of finding a particle of gas at time
t, at point ~r , moving with velocity ~c.
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Relation to Continuum Eqs.

Taking appropriate moments of the BE yields conservation equations
for mass, momentum, and energy

Hilbert expansion: f = fM(1 + Φ + Φ2 + · · · )

I For f = fM , → Euler Equations
I Including 1st perturbation → Navier-Stokes Equations
I Higher order terms yield Burnett, Super Burnett, etc.
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The Spectrum

Metric of Validity of Continuum and Equilibrium Hypotheses:

Kn =
λ

L
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Problem with Hilbert’s 6th Problem?

Hilbert called to develop “mathematically the limiting processes ...
which lead from the atomistic view to the laws of motion of continua”

Contemporary research interpretation: passage from the kinetic theory
of Boltzmann to the continuum theory of Euler as the Knudsen
number Kn → 0.

References:
I “From Boltzmann to Euler,” M. Slemrod, Computers and Math with

Appl, 2012
I “Hilbert’s 6th Problem,” Gorban and Karlin, Bulletins of Am Math

Soc., (2014)
I “The Problem with Hilbert’s 6th Problem,”M. Slemrod, Math Model.

Nat. Phenom. (2015)
I “Famous Fluid Equations are Incomplete,” Mathematical Physics

Review, Quanta Mag., Jul 21, 2015
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Direct Simulation Monte Carlo

Developed by Bird c.1963, consistency with BE established in 1980s,
applicable to dilute gases

Stochastic simulation of a fraction of the particles, with each
representing N/Nsim actual particles

Uncoupling of molecular convection and collisions over small time
steps

Representative collision pairs selected and collisions computed

Molecules convected along their velocity vector

Simulation evolved multiple times to reduce statistical scatter
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Uncoupling Principle

Boltzmann Equation in absence of external forces:

∂

∂t
[f ] = −Df + Jf

The uncoupling of convection and collision over ∆t

f = (1−∆tD)(1 + ∆tJ)f0 +O(∆t2)
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Challenges with DSMC

Significant Variation in Solution (Scatter)

Error Estimation

Computational Expense

Aihua W Wood (AFIT/ENC) DMC Boltzmann AFOSR Aug 2015 16 / 56



DSMC Representation of the VDF

As each simulated particle has a single velocity, within a given cell the
VDF is represented as a point measure approximation

The assumption W = N/Np = O(108) particles each possess the
same velocity is nonphysical

In regions of low density this assumption exaggerates the effect of
collisions and increases the fluctuations in the solution

Assumption limits DSMC to weak converge
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A DSMC 2-D Example

Pre-collision Illustration
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DSMC Simulated Collision

Post-collision Illustration
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Distributional Monte Carlo

As each simulated particle represents a large number of actual
particles, allow each particles velocity to be distributed and possess its
own VDF, fi

Overall VDF given by

f (~c) =
1

Np

Np∑
i=1

fi (~c)

Treat collisions between particle pairs as a space homogeneous
relaxation of the combined 2W actual particles they represent
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Kernel Density Estimation (KDE)

Process for estimating PDF from discrete samples

f̂ (x ; h) =
1

Nh

N∑
i=1

K

(
x − Xi

h

)

The L2 kernel function satisfying∫
K (x) dx = 1,

∫
xK (x) dx = 0

Examples of kernel functions

K (x) =

{
1
2 |x | ≤ 1
0 |x | > 1

, K (x) = 1√
2π

exp
(
− x2

2

)
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KDE Simulation 1/4
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KDE Simulation 2/4
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KDE Simulation 3/4
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KDE Simulation 4/4
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DMC-KDE

Particle VDFs are of fixed functional form

Mean velocity allowed to vary, but kernel function/bandwidth fixed

On the basis of physical reasoning we choose a Gaussian kernel for K

Choosing h(Np) s.t. limNp→∞ h(Np) = 0
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A DMC-KDE 2-D Example

Pre-collision: actual particles represented by one simulated particle no
longer possess the same velocity, but are in translational equilibrium
as a collection
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DMC-KDE Simulated Collision

Post-collision mean velocities determined using same stochastic rules
as Nanbus method
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Convergence of DMC-KDE

Preserves Weak Convergence in L1 (probability measure)

lim
∆t→0

lim
N→∞

∫
R3

φ (~c) f̃ (~c) d~c =

∫
R3

φ (~c) f (~c) d~c

Strong convergence in L∞

lim
∆t→0

lim
Np→∞

∥∥∥f̃ − f
∥∥∥
∞

= 0

Pointwise convergence for bounded solutions

lim
∆t→0

lim
Np→∞

f̃ (~c) = f (~c)

for all ~c ∈ R3.
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DMC-KDE Summary

Analogous to applying a kernel density estimator to DSMC

Distribution function is directly obtained

I Stochastic Solver vs. Stochastic Simulator
I Cost of evaluating distribution function at M points is O (MNp)
I Fast Gaussian Transform can be used to reduce to O (M + Np)

Strong convergence is achieved

DMC-KDE employs fixed PDFs thus is not fully distributional
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Essence of DMC

Seek a fully distributional method with collision selection criteria and
collision modeling that fully incorporate non-singular particle velocity
distributions

I allow for non-Maxwellian particle distributions

For near-Maxwellian distributions, the collision selection criteria from
DMC-KDE provides fair approximations

Treat collision interactions “distributionally”
I apply space homogeneous relaxation process on the joint distribution

function of the 2W particles the two simulated particles represent
I evolve as appropriate
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A DMC 2-D Example

Each particle possesses a VDF
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DMC Simulated Collision

Collision interactions computed as a relaxation toward equilibrium (for the
simulated pair)
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DMC Strong Convergence

If f ∈ L∞ is a solution of the space homogeneous BE at t = tk ,
then f̌ k of DMC converges in L∞ to f k :

lim
Np→∞

‖f̌ − f ‖ = 0.
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A DMC Bhatnagar-Gross-Krook Approximation

To facilitate numerical demonstration of the DMC framework, a
scheme employing the BGK approximation was developed

Distribution computed using space homogeneous BGK equation

Deterministic collision modeling facilitated by distributed velocities

I Point measure based SPM (e.g. DSMC) could not sample all possible
outcomes

Potential drastic effects on variance w/ removal of one stochastic
element

Theorem: Let f be the solution of Boltzmann equation with smooth
initial data f0, f̂ the DMC solution. Then ‖f̂ − f ‖L1 → 0, as
Nsim → 0, ∆t → 0
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The Bobylev-Krook-Wu Solution

First known closed form solution to the space homogeneous BE

Specific to Maxwell molecule

Spherically symmetric solution

Present work utilizes θ = 2
5 , λ = 1

6 .
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Normalized Moments

Bobylev solution

zn (t) =

(
1− 2

5
e−λt

)n−1 [
1 +

2

5
(n − 1) e−λt

]
DSMC:

zn (t) =
1

Np (2n + 1)!!

Np∑
i=1

~c2n
i (t)

DMC-KDE:

zn (t) =
1

Np (2n + 1)!!

Np∑
i=1

~c2n
i (t) + cnh

2n

DMC-BGK moments computed using simple quadrature
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Normalized Moments Compared

Aihua W Wood (AFIT/ENC) DMC Boltzmann AFOSR Aug 2015 39 / 56



Total Variation

Total variation:

V (zn) =

∫ 10

0

∣∣z ′n (t)
∣∣ dt

Compared to Nanbu-DSMC and DMC-KDE, DMC-BGK shows

1 marked reduction of variance
2 superior energy conservation
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Variation of Second NM

Nanbu-DSMC/DMC-KDE/DMC-BGK
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L1 Error Compared

100 run ensemble, 4v = 2/3
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DMC Summary

DMC provides 1st stochastic particle method utilizing distributed
velocities

I No restriction on method of computing collision outcomes

DMC-KDE turns a Boltzmann simulator into a Boltzmann solver
I Strong convergence
I Direct computation/visualization of distribution function
I No variance reduction

DMC-BGK employs a deterministic method for collision outcomes
I Hybrid stochastic-deterministic method
I Substantial improvement in accuracy and variance reduction
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Solving the Boltzmann Collision Integral

Development of a fast deterministic solver for the Boltzmann equation
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Challenges in solving the Boltzmann Equation numerically

Direct numerical evaluation takes O(N
11
3 ) operations each time step,

where N is the number of velocity points.

A 2 GHz processor will use about 50 seconds if N = 103 and
about 1.59E+3 years if N = 106.

Approaches to solving the Boltzmann equation:
I Use HPCs.

I Use efficient numerical techniques (velocity discretization, integration,
and methods for massive parallelization.)

I Approximations to the Boltzmann equation must be used when
appropriate.

I Fastness must balance numerical errors.
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Description of the methods discontinuous Galerkin discretization

Galerkin discretization in velocity variable

Choose a rectangular region K and chop it uniformly into little cells
Kj .

The Galerkin approximation to the solution of the Boltzmann
equation on each cell Kj is of the form

f (t,~x , ~v)|Kj
=

s∑
i=1

fi ;j(t,~x)φji (~v) .

Substituting this into J[f ] and hit the result by a basis function and
integrate over Kj :

∂

∂t
fi ;j(t,~x) + ~v ji · ~∇x fi ;j(t,~x) = I

φji
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Description of the methods discontinuous Galerkin discretization

Galerkin projection of the collision operator

where:

I
φji

=

∫
3

∫
3

f (t,~x , ~v)f (t,~x , ~v1)A(~v , ~v1;φji )d~v1 d~v ,

and the term

A(~v , ~v1;φji ) =
|~g |
2

∫ 2π

0

∫ b∗

0
(φji (~v

′) + φji (~v
′
1)− φji (~v)− φji (~v1))b db dε .

(1)

A(~v , ~v1;φji ) is independent of time and can be precomputed.
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Description of the methods discontinuous Galerkin discretization

Properties of the collision kernel

Theorem 1. Let operator A(~v , ~v1;φji ) be defined by (1) with all gas
particle having the same mass and potential of the particle interaction
being spherically symmetric. Then A(~v , ~v1;φji ) is symmetric with
respect to ~v and ~v1, that is

A(~v , ~v1;φji ) = A(~v1, ~v ;φji ) ∀~v , ~v1 ∈ R3

Also,

A(~v , ~v ;φji ) = 0 ∀~v ∈ R3

Theorem 2. Let operator A(~v , ~v1;φji ) be defined by (1) and let
potential of molecular interaction be dependent only on the distance
between the particles. Then ∀~ξ ∈ R3,

A(~v + ~ξ, ~v1 + ~ξ;φji (~u − ~ξ)) = A(~v , ~v1;φji )

I.e, A(~v , ~v1;φ) is invariant with respect to a shift.

Aihua W Wood (AFIT/ENC) DMC Boltzmann AFOSR Aug 2015 48 / 56



Description of the methods Main description of the methods

Derivation of the methods

1. Approximate f (t,~x , ~v) as a sum of Maxwellian distributions.

f (t, ~x , ~v) =

p∑
i=1

fM(t, ~x , ~v) .

The density estimation of solutions f (t,~x , ~v) can be done by applying
Expectation Maximization Algorithm (EMA).
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T

u

n
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Description of the methods Main description of the methods

Derivation of the methods
1. Approximate f (t,~x , ~v) as a sum of Maxwellian distributions.

f (t, ~x , ~v) =

p∑
i=1

fM(t, ~x , ~v) .

T1 T2

u1

u2n = n1 + n2

.

The density estimation of solutions f (t,~x , ~v) can be done by applying
Expectation Maximization Algorithm (EMA).
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Description of the methods Main description of the methods

Derivation of the methods (cont.)

2. Rewrite DG projection of the B.C.I in convolution form.

Using the invariant property of A(~v1, ~v ;φji ) with respect to a shift, we can
re-write the collision integral as:

Ii (~ξ) =

∫
3

∫
3

f (t,~x , ~v − ~ξ)f (t,~x , ~v1 − ~ξ)A(~v1, ~v ;φci )d~vd~v1 .

where ~ξ = ~ξj is the vector that connects the centers of the element Kc

(cell in the center) and the element Kj .
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Description of the methods Main description of the methods

Derivation of the methods (cont.)

3. Replacing the density estimation expression of f (t,~x , ~v) into the

formulation of Ii (~ξ), we obtain:

Ii (~ξ) =
8

ωi∆~v

∫
3

∫
3

( p∑
i′=1

fMi′ (t, ~x , ~v − ~ξ)

)( p∑
i′′=1

fMi′′ (t, ~x , ~v1 − ~ξ)

)
A(~v1, ~v ;φc

i )d~vd~v1

=
8

ωi∆~v

p∑
i′ 6=i′′

i′,i′′=1

∫
3

∫
3

fMi′ (t, ~x , ~v − ~ξ) fMi′′ (t, ~x , ~v1 − ~ξ)A(~v1, ~v ;φc
i ) d~vd ~v1

=
8

ωi∆~v

p∑
i′ 6=i′′

i′,i′′=1

(
I i

′ i′′
i (~ξ)

)
,

where I i
′ i′′

i (~ξ) =

∫
3

∫
3

fMi′ (t, ~x , ~v − ~ξ) fMi′′ (t, ~x , ~v1 − ~ξ)A(~v1, ~v ;φc
i ) d~vd~v1 .
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Description of the methods Main description of the methods

Derivation of the methods (cont.)

4. Diagonalization of A(~v , ~v1;φci ).

In the discrete velocity space, kernel A(~v , ~v1;φci ) can be represented
by an N × N symmetric matrix. Thus we can compute its
Eigen-Decomposition using available software such as LAPACK
and/or PROPACK:

A(~v , ~v1;φc
i ) =

N∑
k=1

λkΨk(~v)ΨT
k (~v1) + εDG

We can further approximate A(~v , ~v1;φci ) using M-pairs of eigenvalues
and eigenvectors:

A(~v , ~v1;φc
i ) =

M∑
k=1

λkΨk(~v)ΨT
k (~v1) + εDG + εtruncation

where εtruncation = O

(√∑N
i=M+1

|λi |2∑N
i=1 |λi |2

)
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Description of the methods Main description of the methods

Derivation of the methods (cont.)

5. Substituting the Eigen-Decomposition of A(~v , ~v1;φci ) into I i
′i ′′

i :

I i
′ i′′

i (~ξ) =

∫
3

∫
3
fMi′

(t, ~v − ~ξ) fMi′′
(t, ~v1 − ~ξ)

( M∑
k=1

λkΨk (~v)Ψk (~v1)

)
d~vd ~v1

=
M∑
k=1

λk

(∫
3
fMi′

(t, ~v − ~ξ)Ψk (~v) d~v

)(∫
3
fMi′′

(t, ~v1 − ~ξ)Ψk (~v1) d ~v1

)
.

Therefore,

I
φ
j
i

=

p∑
i′ 6=i′′

i′,i′′=1

N∑
k=1

λk

(∫
3
fMi′

(t, ~v − ~ξ)Ψk (~v) d~v

)(∫
3
fMi′′

(t, ~v1 − ~ξ)Ψk (~v1) d ~v1

)
. (2)

6. Goal: To compute the convolution integrals accurately!
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Description of the methods Main description of the methods

Pre-computed Ansatz: Fk(~ξ,T )

To optimize the evaluation of (2), we design the following object:

Fk(~ξ,T ) =
1

(
√
πT )3

∫
3

exp

(
−|
~w − ~ξ|2

T

)
Ψk(~w)d ~w .

Therefore, ∫
3

fM(t, ~v − ~ξ)Ψk(~v)d~v = n Fk(~ξ + ~̄u,T ) .

That is, to obtain the values of the convolution integrals, we just
need to perform interpolations for Fk(~ξ,T ).

The values of Fk(~ξ,T ) can be computed accurately using adaptive
quadrature with high Gauss order.
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Description of the methods Floating point operations

Evaluating B.C.I takes O(N2) flops each iteration

1. Perform DG interpolations of Fk(~ξ,T ) at N different velocity points.

⇒ It takes O(N) operations for the DG interpolations.

2. These operations are repeated for each of the N eigenvectors used in
relation (2).

Overall, it takes O(N2) operations.

Note: The time of performing the projection algorithm << the time of
performing DG interpolations for N eigenvectors as N is large.
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Description of the methods Floating point operations

Advantages & Disadvantages of the new method

Advantages:

Fast method of order O(N2), where N is the total number of velocity
points.

Can be implemented using parallelization.

Disdvantages:

Interpolation errors.

Requires large storage O(MN2), where M is a fraction of N, to store
the values of the pre-computed ansatz Fk
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