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Brief summary

I FA9550-12-1-0103 “Clique Relaxations in Biological and
Social Networks: Foundations and Algorithms”

I PI: Sergiy Butenko; co-PIs: Balabhaskar Balasundaram and
Vladimir Boginski

I Dates: July 1, 2012 – June 30, 2015

I The objective of this project is to provide a unifying
theoretical and computational framework for the study of
clique relaxation models arising in biological and social
networks.
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Network-based analysis of big data

Big data arising in various complex systems can be conveniently
modeled using networks/graphs:

I components of the complex system – vertices
I pairwise interactions between different components – edges

Network-based analysis allows to capture some global structural
properties of the system and predict overall trends in its
dynamics.
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Clusters in networks

In many applications one is interested in detecting/designing
cohesive clusters

I Communication/sensor networks
I Transportation/supply networks
I Power grid
I Biological networks
I Social networks
I Financial networks
I Electronic warfare
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Geometric graphs

A unit-disk graph (UDG) can be defined as the intersection graph
of closed disks of equal (e.g., unit) diameter.
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Social networks

A social network is described by G = (V ,E) where V is the set of
“actors” and E is the set of “ties”.

I actors are people and a tie exists if two people know each
other.

I actors are wire transfer database records and a tie exists if
two records have the same matching field.

I Cohesive subgroups are “closely knit groups” in a social
network.

I Social cohesion is often used to explain and develop
sociological theories.
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Cliques
I Etymology: The term clique originates from Old French

cliquer meaning make a noise

I WordNet dictionary definition: an exclusive circle of people
with a common purpose

I Luce and Perry (1949): social clique – a group of people
that know (are friends of) all other people in the group

24/38

Some Drawbacks of k-Cliques and k-Clubs

3. k-cliques and k-clubs do not have meaningful complementary
definitions.
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Clusters in real-life networks
Cliques may be overly restrictive for practical purposes

4-connected

1kw6 (lyase)

2-club

1ruz (viral protein)

.7-quasiclique

1dxr (photosynthesis)

3-core3-plex

1p9m (signaling)1xg0 (immune sys.)
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Alternatives to clique

G = (V ,E). S ⊆ V is
I s-clique if dG(v ,v ′)≤ s, for any v ,v ′ ∈ S (Luce 1950)
I s-club if diam(G[S])≤ s (Alba 1973, Mokken 1979)
I s-plex if δ(G[S])≥ |S|−s (Seidman & Foster 1978)
I s-defective clique if G[S] has at least

(|S|
2

)
−s edges (Yu et

al. 2006)
I k -core if δ(G[S])≥ k (Seidman 1983)
I k -block if κ(G[S])≥ k (Moody & White 2003)
I γ-quasi-clique if ρ(G[S])≥ γ (Abello et al. 2002)
I (λ,γ)-quasi-clique if δ(G[S])≥ λ(|S|−1) and ρ(G[S])≥ γ

(Brunato et al. 2008)
I ...
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Alternative clique definitions

(a) Vertices are distance one away from each other

(b) Vertices induce a subgraph of diameter one

(c) Every one vertex forms a dominating set

(d) Degree: Each vertex neighbors all vertices

(e) Density: Vertices induce a subgraph that has all possible
edges

(f) Connectivity: need to be remove all vertices to obtain a
disconnected induced subgraph
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Defining clique relaxations

We can define clique relaxations by

(i) restricting a violation of an elementary clique-defining
property
or by

(ii) ensuring the presence of an elementary clique-defining
property



12/35

Relative relaxations

Vertices induce a subgraph that has the fraction γ of all possible
edges – γ-quasi-clique

4-connected

1kw6 (lyase)

2-club

1ruz (viral protein)

.7-quasiclique

1dxr (photosynthesis)

3-core3-plex

1p9m (signaling)1xg0 (immune sys.)
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Regular and weak relaxations
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I {2,3,4} is a 1-club ... the
“regular” clique

I {1,2,4,5,6} is a 2-club
I {1,2,3,4,5} is a 2-clique but

NOT a 2-club
I maximality of a 2-club is

harder to test

s-clique appears to be a weaker cluster than s-club
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Weak clique relaxations

Distance-based: s-clique (weak s-club)

Vertices in S are distance at most s away from each other in G.

Connectivity-based: weak k -block

Any two vertices in S have at least k vertex-independent paths
between them in G
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Clique relaxations taxonomy

Clique Relaxations 

Restricting clique 

property  violation  

Ensuring a fixed-size 

clique property 

Standard/Weak Absolute/Relative Structural/Statistical 

J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in
network analysis. European Jour. of Oper. Res., 226: 9–18, 2013.
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Additional elementary
clique-defining properties

A subset of vertices C is a clique in G if and only if one of the
following conditions hold:

(g) Independence number α(G[C]) = 1;

(h) Vertex cover number τ(G[C]) = |C|−1;

(i) Chromatic number χ(G[C]) = |C|;

(j) Clique cover number χ̄(G[C]) = 1;

(k) Edge connectivity number λ(G[C]) = |C|−1.
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Higher order clique relaxations

Simple Higher Order Relaxations: relaxing multiple elementary
clique-defining properties simultaneously

(λ,γ)-quasiclique: Each vertex is connected to at least λ(|S|−1)
vertices, and the induced subgraph has at least the fraction γ of
all possible edges.

k-Hereditary Higher Order Relaxations: connectivity
embedded into the definition

k-hereditary s-club: The induced subgraph is not only an s-club,
but also the removal of up to k vertices still preserves the s-club
property.
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Cohesiveness properties

S ⊆ V Diameter Dominating Set Minimum Degree Edge Density Connectivity

Clique “one” “one” “all” “one” “all”

s-club s |S|−1 1 2
|S| 1

s-plex s s |S|−s 1− s−1
|S|−1 |S|−2s+2

k -core d ′k |S|−k k k
|S|−1 2k +2−|S|

γ-quasi-clique dγ |S|
⌈

γ
(|S|

2
)
−
(|S|−1

2
)⌉

γ

⌈
γ
(|S|

2
)
−
(|S|−1

2
)⌉

k -block
⌊
|S|−2

k +1
⌋

|S|−k k k
|S|−1 k

d ′k = max
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|S|
k +1

⌉
,3
(⌊
|S|−z
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⌋
−1
)
+z,z ∈ {0,1,2}

}

dγ =

⌊
|S|+ 1

2
−
√

γ|S|2− (2+ γ)|S|+ 17
4

⌋
.
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Structiural properties

Definition (Heredity)
A graph property Π is said to be hereditary on induced
subgraphs, if for any graph G with property Π the deletion of any
subset of vertices does not produce a graph violating Π.

Definition (Weak heredity)
A graph property Π is said to be weakly hereditary, if for any
graph G = (V ,E) with property Π all subsets of V demonstrate
the property Π in G.
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Structiural properties

Definition (Quasi-heredity)
A graph property Π is said to be quasi-hereditary, if for any graph
G = (V ,E) with property Π and for any size 0≤ r < |V |, there
exists some subset R ⊂ S with |R|= r , such that G[S \R]
demonstrates property Π.

Definition (k -Heredity)
A graph property Π is said to be k-hereditary on induced
subgraphs, if for any graph G with property Π the deletion of any
subset of vertices with up to k vertices does not produce a graph
violating Π.
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Hereditary clique relaxations

I s-plex, s-defective clique, s-bundle

S. Trukhanov, C. Balasubramaniam, B. Balasundaram, and S.
Butenko. Algorithms for detecting optimal hereditary structures in
graphs, with application to clique relaxations. Computational
Optimization and Applications, 56: 113–130, 2013.

O. Yezerska, S. Butenko, and V. L. Boginski. Detecting robust
cliques in graphs subject to uncertain edge failures. Under review
in Annals of Operations Research.

Z. Miao and B. Balasundaram. Approaches for finding cohesive
subgroups in large-scale social networks via maximum k -plex
detection. Under review in Networks.



22/35

Weakly hereditary clique relaxations

Weak clique relaxations:

I s-clique
I weak k -block

Optimization problems for these models can be reduced to
maximum clique in corresponding auxiliary graphs.
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Quasi-hereditary clique relaxations

I quasi-clique

F. Mahdavi Pajouh, Z. Miao and B. Balasundaram. A
branch-and-bound approach for maximum quasi-cliques. Annals of
Operations Research, 216: 145–161, 2014.

A. Veremyev, O. A. Prokopyev, S. Butenko, and E. L. Pasiliao.
Exact MIP-based approaches for finding maximum quasi-cliques
and dense subgraphs. Computational Optimization and
Applications, to appear, DOI 10.1007/s10589-015-9804-y.

Z. Miao and B. Balasundaram. Lagrangian dual bounds for the
maximum quasi-clique problem. Working paper.
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Non-hereditary clique relaxations

I s-club and variations

S. Shahinpour and S. Butenko. Dinstance-based clique relaxations
in networks: s-cliques and s-clubs. In: Models, Algorithms, and
Technologies for Network Analysis. Ed. by B. I. Goldengorin et al.,
Spinger Science + Business Media, 2013, pp.149–174.

E. Moradi and B. Balasundaram. Finding a maximum k -club using
the k -clique formulation and canonical hypercube cuts.
Optimization Letters, to appear, DOI 10.1007/s11590-015-0971-7.

A. Buchanan, J. S. Sung, V. Boginski, S. Butenko. On connected
dominating sets of restricted diameter. European Journal of
Operational Research, 236: 410–418, 2014.
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Non-hereditary clique relaxations

I s-club and variations

J. Pattillo, Y. Wang, and S. Butenko. Approximating 2-cliques in
unit disk graphs. Discrete Applied Math, 166: 178–187, 2014

F. Mahdavi Pajouh, E. Moradi, and B. Balasundaram. Detecting
large risk-averse 2-clubs in graphs with random edge failures.
Under review in Annals of Operations Research, submitted
December 2014.
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Non-hereditary clique relaxations

I k -cores, k -blocks and variations

C. Balasubramaniam and S. Butenko. On robust clusters of
minimum cardinality in networks. Annals of Operations Research,
to appear. DOI 10.1007/s10479-015-1992-4.

A. Veremyev, O.A. Prokopyev, V. Boginski, and E.L. Pasiliao.
Finding maximum subgraphs with relatively large vertex
connectivity. European Journal of Operational Research, 239:
349–362, 2014.

J. Ma and B. Balasundaram. On the chance-constrained minimum
spanning k -core problem. Working paper.
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Non-hereditary clique relaxations

I connectivity, clustering coefficient based

A. Buchanan, J. Sung, S. Butenko, and E. L. Pasiliao. An integer
programming approach for fault-tolerant connected dominating
sets. INFORMS Journal on Computing, 27: 178–188, 2015.

Y. Wang, A. Buchanan, and S. Butenko. On imposing connectivity
constraints in integer programs. Submitted to Mathematical
Programming, June 2015. Available online at
http://www.optimizationonline. org/DB HTML/2015/02/4768.html

Z. Ertem, A. Veremyev, and S. Butenko. Detecting large cohesive
subgroups with high clustering coefficients in social networks.
Social Networks, conditionally accepted.
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Scale-reduction techniques

Using scale reduction techniques based on clique relaxations in
conjunction with Östergård’s max clique algorithm the clique
number was obtained on all graphs in the SNAP database and
10-th DIMACS Implementation Challenge (graphs with up to
≈18.5 million vertices)

A. Verma, A. Buchanan, and S. Butenko. Solving the Maximum
Clique and Vertex Coloring Problems on Very Large Sparse
Networks. INFORMS Journal on Computing, 27: 164–177, 2015.

INFORMS Connect President’s Pick for May 2015.
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Cliques revisited

A. Buchanan, J. L. Walteros, S. Butenko, and P. M. Pardalos.
Solving maximum clique in sparse graphs: an O(nm + 2d/4)
algorithm for d-degenerate graphs. Optimization Letters, 8:
1611–1617, 2014.

C. Balasubramaniam, S. Butenko, and B. Balasundaram. On upper
bounds for the maximum clique problem. Submitted, October
2015.

V. Stozhkov, G. Pastukhov, V. Boginski, and E. L. Pasiliao. New
analytical lower bounds on the clique number of a graph.
Submitted October 2015.
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Fractional objective

Definition
Given a simple undirected graph G = (V ,E), where each vertex
i ∈ V is assigned two non-negative rational weights, ai and bi ,
the maximum ratio clique problem (MRCP) is to find a maximal
clique C in G that maximizes the quantity ∑i∈C ai

∑i∈C bi
.

S. Sethuraman and S. Butenko. The maximum ratio clique
problem. Computational Management Science, 12:
197–218, 2015.

Runner-up, best student paper award at the CMS-2013
conference in Montreal
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Clustering
Partitioning a set of entities into ‘natural groups’ (clusters)Page 1 of 1

2/20/2012file://C:\Documents and Settings\butenko\My Documents\presentations\Gainesville12-DIS...

Fortunato’s 2010 survey has over 3,700 citations (Google Scholar).
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k -Community clustering

I Introduced a general purpose clustering algorithm based on
clique relaxations.

I Do not aim to optimize any standard performance measure.
I Using k -community as a structure does well for a number of

clustering quality measures.
I Enhancements to the basic algorithm can be designed

according to requirements.

A. Verma and S. Butenko. Network clustering via clique relaxations: a
community-based approach. In: Graph Partitioning and Graph Clustering.
Ed. by D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. American
Mathematical Society, 2013, pp.125–136.
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Extensions: Analysis of heuristics

“Club sandwich”

ω(G)≤∆(G) + 1≤ ω̄2(G),

∆(G) is the largest degree, ω2(G) is the 2-club number

Definition

A heuristic is said to be provably best for an optimization problem if,
assuming P 6= N P , there is no polynomial-time algorithm that always
finds a better solution (when one exists).

S. Kahruman-Anderoglu, A. Buchanan, S. Butenko, and O.
Prokopyev. On provably best construction heuristics for hard
combinatorial optimization problems. Networks. To appear, DOI
10.1002/net.21620.
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“The whole is more than the sum of its parts.”
–Aristotle (384-322 BC)
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Thank you!
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