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Scattering by an Inhomogeneous Medium
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The direct scattering problem under
consideration is to find u such that

∆u + k2n(x)u = 0 in R3

u = us + ui

lim
r→∞

r
(
∂us

∂r
− ikus

)
= 0

where ui(x) = eikd·x , |d | = 1, n(x) is piecewise continuous and
n(x) = 1 for x ∈ R3 \ D. There exists a unique solution u of the direct
scattering problem for which us has the asymptotic behavior

us(x ,d) =
eikr

r
u∞(x̂ ,d) + O

(
1
r2

)
where x̂ = x/|x |. u∞ is the far field pattern of us.



Transmission Eigenvalues

The far field operator F : L2(S2) → L2(S2) where S2 := {x : |x | = 1}
is defined by

(Fg)(x̂) :=
∫
S2

u∞(x̂ ,d)g(d)dsd

and is injective unless k is a transmission eigenvalue, i.e. a value of k
such that there exists a nontrivial solution to

∆w + k2n(x)w = 0 in D
∆v + k2v = 0 in D

w = v on ∂D
∂w
∂ν

=
∂v
∂ν

on ∂D

where ν is the unit outward normal to ∂D.

Transmission eigenvalues can be determined using the operator F
and carry information about n(x).



Transmission Eigenvalues
Let k1 be the first transmission eigenvalue and suppose n(x) > 1 for
x ∈ D or n(x) < 1 for x ∈ D. Then, given k1 and a knowledge of D, a
constant n0 can be determined such that the scattering problem for
n(x) = n0 also has k1 as its first transmission eigenvalue. Then

min
D

n(x) ≤ n0 ≤ max
D

n(x).

Flaws or voids in D can be detected by changes in k1 and hence n0.

In our previous research initiative with Wright-Patterson AFB the
above ideas were applied to anisotropic materials interrogated by
microwaves, in which case the changes in the material structure is
characterized by changes in the eigenvalues of the permittivity tensor.
Two problems were considered:

1 Scattering by anisotropic dielectrics in free space,

2 Scattering by isotropic dielectrics on a perfectly conducting
plane.

See RIMSS Task Order 0005, Final Report, August 2013.



Pros and Cons of Using Transmission Eigenvalues

Pros:

1 A number n0 is obtained which for isotropic media is close to an
average value of n(x) and for anisotropic media is close to the
arithmetic mean of the eigenvalues.

2 Transmission eigenvalues are a physical characterization of the
media which corresponds to the non-scattering of special
incident fields.

Cons:

1 The first transmission eigenvalue is determined by the material
properties of the scatterer, i.e. one can not choose the
interrogating frequency.

2 The method of transmission eigenvalues only applies to
dielectrics or materials with very small absorption.



Modified Far Field Operator

An alternative approach to using transmission eigenvalues is to
modify the far field operator and make use of Stekloff eigenvalues. In
particular let ν be the unit outward normal to ∂D and h denote the
solution of the exterior impedance problem (where =(λ) ≥ 0):

∆h + k2h = 0, x ∈ R3 \ D

h(x) = eikd·x + hs(x)

∂h
∂ν

+ λh = 0 on ∂D

lim
r→∞

r
(
∂hs

∂r
− ikhs

)
= 0.



Modified Far Field Operator

If we now replace the far field operator F by the modified far field
operator F : L2(S2) → L2(S2) defined by

(Fg)(x̂) :=
∫

S2
[u∞(x̂ ,d)− h∞(x̂ ,d)]g(d)ds(d) (∗)

where h∞ is the far field pattern of h then F is injective unless λ is a
Stekloff eigenvalue i.e. a value of λ such that there exists a nontrivial
solution of

∆w + k2n(x)w = 0 in D
∂w
∂ν

+ λw = 0 on ∂D.



Modified Far Field Operator

Now for z ∈ D let

Φ(x , z) =
eik|x−z|

4π|x − z|
and let Φ∞ be the far field pattern for Φ(x , z), i.e.

Φ∞(x̂ , z) =
1

4π
e−ik x̂·z , x̂ =

x
|x |

.

Consider the modified equation

Fg = Φ∞(x̂ , z)

where F is the modified far field operator defined by (∗) and for
g ∈ L2(S2) define the Heglotz wave function with kernel g by

vg(x) :=
∫

S2
exp(ikx · d)g(d)ds(d).



Modified Far Field Operator

Theorem
If λ is not a Stekloff eigenvalue then for every ε > 0 there exists
gz
ε ∈ L2(S2) such that for z ∈ D

‖Fgz
ε − Φ∞(·, z)‖L2(S2) < ε. (∗∗)

If w is the solution to

∆w + k2n(x)w = 0 in D
∂w
∂ν

+ λw =
∂Φ(·, z)

∂ν
+ λΦ(·, z) on ∂D.

then w can be uniquely decomposed as w = w i + ws where
w i ∈ H1(D) satisfies ∆w + k2n(x)w = 0 in D and w ∈ H1

loc(R3)
satisfies the radiation condition. The function gz

ε in (∗∗) is such that
vgz

ε
satisfies

‖w i − vgz
ε
‖H1(D) = O(ε).



Modified Far Field Operator

Theorem

1 Assume that λ is not a Stekloff eigenvalue and let gz
ε satisfy (∗∗).

Then if vgz
ε

is the Herglotz wave function with kernel gz
ε for every

z ∈ D we have that ‖vgz
ε
‖H1(D) is bounded as ε → 0.

2 Assume that λ is a Stekloff eigenvalue and let gz
ε ∈ L2(S2)

satisfy (∗∗). Then for almost every z ∈ D we have that ‖vgz
ε
‖H1(D)

cannot be bounded as ε → 0.

Remark If λ is a Stekloff eigenvalue then (∗∗) is valid unless the
Stekloff eigenfunction can be uniquely continued as a solution of
∆w + k2n(x)w = 0 into all of R3.



Stekloff Eigenvalues

Theorem

Assume that n(x) is real valued. Then Stekloff eigenvalues exist, are
real and are discrete.

The case when n(x) is complex valued (i.e. the scattering object is
absorbing) is more difficult since then the eigenvalue problem is no
longer self-adjoint.

Theorem

Assume that n(x) = n1(x) + i
n2(x)

k
when n1 > 0 and n2 > 0. Then

1 There exist infinitely many Stekloff eigenvalues in the complex
plane and they form a discrete set without finite accumulation
points.

2 Except for a finite number of eigenvalues, all the Stekloff
eigenvalues lie in a wedge of arbitrarily small angle with lower
edge on the negative x-axis.



Stekloff Eigenvalues

The advantage of using Stekloff eigenvalues as a target signature are
the following:

1 The interrogation frequency can be chosen arbitrarily.

2 The method of Stekloff eigenvalues in principle applies to both
absorbing and non-absorbing media.

Remark: The Stekloff eigenvalue problem for Maxwell’s equations is
an open problem. In particular, when D is a ball it can be shown that
if λ is a Maxwell’s Stekloff eigenvalue than so is 1/λ i.e. the use of
compact operators to establish the existence and discreteness of
Stekloff eigenvalues is problematic.



Stekloff Eigenvalues and Nondestructive Testing

In nondestructive testing one is interested in small changes in the
inhomogeneity n(x). In particular, support n(x) is perturbed by δn
giving rise to a change in the Stekloff eigenfunction w ∈ H1(D) by δw
and Stekloff eigenvalue by δλ. Define

(f ,g) :=
∫

D
f g dx , 〈f ,g〉 :=

∫
∂D

f g ds.

Then, neglecting quadratic terms, we have that

δλ ≈ k2 (δnw ,w)

〈w ,w〉
We will illustrate the applicability of this formula in the numerical
examples that follows



Remarks on Numerical Examples

The preceding formula suggests that some eigenvalues
are more susceptible to changes in n(x) than others.
The first two or three Stekloff eigenvalues (ordered by
absolulte value) are the ones best approximated using the
far field data for the wave number we have used.
Examples are given using far field data. However, near
field data can also be used just as easily.



Stekloff eigenvalues: Unit Disk

D is the unit disk
n(x) = 4, k = 1
Arbitrary 51
incoming waves
No extra noise on
the data
Eigenvalues are
exact and shown by
+ in the graph. -6 -4 -2 0 2 4 6

Stekloff parameter λ

0

20

40

60

80

100

120

140

160

180

200

A
v
e
ra

g
e
 n

o
rm

 o
f 
g

01234567



Sensitivity to noise

Same example as
before but n(x) = 4
or n(x) = 4.1
Noise added
pointwise
Percentage is the
relative `2 norm
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Sensitivity of Eigenvalues: Unit Disk with Flaw

The “flaw” is a circular region of radius rc centered at (xc ,0) with
n(x) = 1 inside the flaw. Noise ε = 0.01. Wavenumber k = 1.
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Changing xc , rc = 0.05 Changing rc , xc = 0.3.

Plot (λc
j∗ − λj)/|λj |, j = 1, · · · ,7 against geometric parameters.



Changes in eigenvalues: Unit Disk with Flaw

Flaw is radius rc = 0.05 centered at (0.3,0). All parameters as
in the previous examples.
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Complex Eigenvalues: Unit disk n(x) = 4 + 4i

Complex eigenvalues can be detected by the same procedure
as before but now searching in a region in the complex plane.

Real part of the eigenvalue
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Other Projects - Delamination

Non-destructive testing of the interface between two different
materials. This project is motivated by the possibility of using
elastic waves to inspect whether the solid propellant in a rocket
has separated from its body1.





 

 

A1,n1 and A2,n2 are the con-
stitutive parameters of mate-
rial 1 and 2, respectively.
f1 and f2 indicate the profile of
the opening on the interface.

Derive an approximate
model based on
asymptotic analysis.

Use the linear sampling
method to detect the
defective part of the
interface.

Analyze the corresponding
transmission eigenvalues
to obtain additional
information about the
opening.

1F. CAKONI, I. DE TERESA TRUEBA, H. HADDAR AND P. MONK,



Other Projects - Delamination

Examples of reconstruction of the delaminated part of the interface
using the linear sampling method based on the approximate
asymptotic model.



Other projects: Electromagnetic Waveguides

Use frequency domain data to image objects in a perfectly
conducting waveguide. This project investigates the frequency
domain LSM for finding perfectly conducting objects in a
waveguide2.

Reconstruction of a sphere
of radius 0.2 in a unit radius
waveguide. Measurements
only above the scatterer.

Variational analysis of the
forward problem.

Method of fundamental
solutions to solve the
forward problem.

Analysis of the Linear
Sampling method in this
application.

2FAN YANG, PhD thesis



Other projects: Time domain inverse problem in a
waveguide

Use time domain data directly to image objects in a waveguide.
This project investigates the time domain LSM for finding sound
soft objects in a sound hard waveguide3.
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Laplace domain
techniques to analyze the
forward problem.

Convolution Quadrature
time domain boundary
integral forward solver.

Analyze the Time Domain
Linear Sampling method in
this application.

3P. MONK AND V. SELGAS, submitted for publication,
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