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Introduction 

Nanoparticles 

Nanoparticles are ultrafine particles characterized by their nanoscale  

dimension ranging from 1 to 100 nanometers. 

Their unique properties have been studied and exploited for many  

defense and security related applications. 
(a) Nanoparticles as  

propellants of satellites and 

space craft propulsion  

(Louis et. al. 2007) 

(b) Nanocomposites with excellent  

mechanical and electric properties 

(FSU HPMI) 

(d) Sensing toxic biological weapons (Venkata et. al. 2011) 

(c) Photovoltaic catalyst for  

solar cell (NSF) 

These applications require nanoparticle products of precisely controlled  

sizes and shapes, because the functionalities of the nanoparticles are  

determined by their sizes and shapes. 
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Research Statement 

Statement of Research 

Due to the random nature of a chemical synthesis process of  

nanoparticles (colloidal self-assembly), nanoparticles produced therein  

are prone to having broad distributions in size and shape. 

Producing nanoparticles with concentrated size and shape distributions is  

a long-time desire of nano scientists. 

For controlling the process for better size and shape concentration, one  

should have a good process model to describe size and shape changes  

in the self-assembly process. 

However, classical theory of particle crystallization does not appear to  

exactly describe the self-assembly system. Hard to find the 

first-principle-based theory for explaining the full scale nanoparticle  

self-assembly. 

Dynamic Data-Driven Approach: Our research objective is to build a  

predictive model of particle size and shape changes, i.e., P(Sizet , Shapet ),  

using multiscale process measurements. 
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Overall Approach 

Combining multiscale metrologies 

There are multiple measurement techniques that can measure particle sizes  

and shapes, but there is no single technique that provides sufficient  

information to build the predictive model. 

Dynamic light scattering (DLS) provides particle size information  

conditioned on that shape information is known; i.e., DLS can only  
provide P(Sizet |Shapet ). 

Electron microscope (TEM) can provide both size and shape information  

but do so for a very small portion of sample. The output may not be  
statistically reliable. However, the shape distribution, P(Shapet ), is still  

estimable with the small portion since the variety of shapes is relative  

small. 

Combining two instruments can provide the full picture, 
 

P(Sizet |Shapet )P(Shapet ) = P(Sizet , Shapet ). 
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Overall Approach 

Combining multiscale metrologies 

We will use both TEM and DLS measurements to build a predictive model  
P(Sizet , Shapet ). The most desirable is taking full information out of the two  

instruments while minimizing expensive TEM operations. 
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Overall Approach 

Overall DDDAS Strategy 

We expect that P(Shapet ) changes slower than P(Sizet |Shapet )! Trigger TEM  

operations only when potential changes in P(Shapet ) are detected. But, how? 

DLS measurements TEM measurements 

Pm(Size | Shape) Pm(Shape) 

Process Model  

P(Sizet, Shapet) 

Agreed? 

If “no”,  

dynamically  

invoke 

observed distribution observed distribution 

Constantly invoked 

Conditional Size Model 
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If “yes”,  
Agreed?   

If “no”, 

update update 

 
Shape Model 

P(Shapet) 

Legends 

 

Dynamic  

Actions 

 

Information 

flow 
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Overall Approach 

My research: Big data challenge in realtime monitoring 

To implement the strategy, we need to solve the following research problems: 

Task 1. Data Analysis: DLS for Particle Sizes (Li et al., 2015), TEM for  

Particle Sizes and Shapes (Park et al., 2013; Konomi et al., 2013; Qian  

et al., 2015; Agbabiaka et al., 2013) 

Task 2. Dynamic Process Modeling: How do we describe the process of  

changes in particle size and shape distributions? (Park, 2014; Woehl 

et al., 2013) 

Task 3. Dynamic Model Update: How do we update the process model  

with either of DLS or TEM data? (Park, 2014) 

Task 4. Dynamic Sensor Invocation: When do we need to invoke TEM  

operations? (Park and Shrivastava, 2014; Qian et al., 2015) 
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Details 

Process modeling 

θ 

r(θ) 

We represent ‘size and shape’ of a nanoparticle as the outline of the  

nanoparticle (Park, 2014, Technometrics). 
r (θ) represents the outline, which quantifies the distance from the center  

to the outline along angle θ. 
(a)  an object’s outline (b) The corresponding radius function 

 
 

r(θ) 

reference axis 

r (θ, t ) represents the time change of the outline by a nanoparticle  

self-assembly process, and 
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Details 

Process modeling 

The process can be represented in a parametric form, 

(1) 

φm (t )’s and γn (θ)’s are spline basis functions. 

αm,n  are degrees of freedom (basis coefficients). 

 
                                  quantifies the randomness on the outline change in a  
self-assembly process, and P(Sizet , Shapet ) can be fully characterized by 

(2) 
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Details 

Dynamic Model Updates 

The prior distribution P(α) is updated with new data, from either DLS or TEM. 

P(α|New Data) ∝  P(New Data|α)P(α) 

The likelihood model P(New Data|α) is different depending on the type of  

data. Note that the DLS data only carries size information, 

(3) 

We formulate the two likelihood models 

For DLS:a link function relating size observations to 

For TEM:a link function relating shape observations to individual 
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Details 

Dynamic Model Updates 

Exact block Gibbs sampler for the model updatewith TEM likelihood  

model can be found in our technometrics paper (Park, 2014), but it is also  

applicable for the model update with the DLS likelihood model. 

It is based on the Gibbs samplers proposed for an infinite mixture model  

(Papas 2008) and is modified for the mixture of truncated distributions. 

For more computationally efficient update, we are working on anactive  

set type optimizer for updating the infinite mixture model. 
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Details 

Triggering TEM Operation 

A remaining problem is whether to trigger TEM operation at time t + 1.  

Following our paper (Li et al., 2015), we use the general likelihood ratio test  

with DLS data. Conceptually, 

Collect new DLS Data at time t + 1. 

Conditioned on that the current shape model P(Shapet ) remains true in  

time t + 1, predict P(Sizet +1|Shapet ) from the predictive model, and  

obtain the joint distribution P(Sizet +1|Shapet )P(Shapet ). 

Compute the likelihood of observing the DLS data given the particle sizes  
and shapes are distributed as P(Sizet +1|Shapet )P(Shapet ). 

 
If the likelihood is lower than a certain threshold, either the current shape  
model P(Shapet ) or the model prediction P(Sizet +1|Shapet ) is wrong, so we  

need to trigger new TEM to figure out the reason. 
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Demonstration 

Simultaion Study: TEM Triggering 
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Demonstration 

Simultaion Study: TEM Triggering 

The ARL performance is averaged over 500 replicated cases (ARL = average  

time to detect changes / measurement rate; smaller is better). 

 
Table : ARL performance for size changes (µk  → µk  + δσ01) 

ν Magnitude of Change (δ) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

0.05 21.74 1.25 1.02 1.00 1.00 1.00 1.00 

0.01 166.67 1.31 1.04 1.00 1.00 1.00 1.00 

0.0027 > 500.00 1.35 1.06 1.00 1.00 1.00 1.00 

Table : ARL performance for shape changes (µ1  → µ1  + δσ0e) 

ν Magnitude of Change (δ) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

0.05 21.74 13.51 3.03 1.55 1.09 1.01 1.00 

0.01 166.67 50.00 3.87 1.87 1.44 1.16 1.09 

0.0027 > 500 71.42 4.03 1.88 1.44 1.16 1.10 
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Demonstration 

Real Data Study: TEM Triggering 

Summary of experimental set-up: 

Growth process: we implemented the seed-mediated nanoparticle growth  

developed by Nikoobakht (2003). 

* Source: Growth Mechanism of Gold Nanorods, Park et. al., Chemistry of Materials 2013 25 (4),  555 
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Demonstration 

Real Data Study: TEM Triggering 

Summary of experimental set-up: 

The whole implementation was performed in the DLS machine for  

continuously taking DLS measurements. 

JEM-200F (spatial resolution: 0.11 nm) BI-200SM (DLS/SLS) 

 

Take and freeze small  

samples for TEM 

Samples were regularly taken from the DLS machine to prepare TEM  

samples, which was manually done since we do not have in-situ TEM yet;  

we will get an in-situ TEM later this year with our recent DURIP grant and  

can automate this measurement process. 
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Demonstration 

Real Data Study: TEM Triggering 

Data Description: 

96 DLS data and 20 TEM data were taken regularly in between 0 and 20  

minutes from the start of the process. 

Both DLS and TEM data taken in between 0 and 4 minutes were used to  
learn the initial predictive model r (θ, t ). 

Ground truths for P(Sizet , Shapet ) can be constructed by using all of the  

collected data as follows: 
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Demonstration 

Real Data Study: TEM Triggering 

TEM triggering process was initiated after t = 5 minutes, following our DDDAS  

approach. Only 6 TEM operations are triggered in between 5 and 20 minutes. 
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Demonstration 

Real Data Study: TEM Triggering 

The DDDAS output was compared with two baselines, ground-truth and the naive  

predictive model without updates. (solid lines: estimated, dotted lines: ground  truth) 
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Future Works 

Summary and On-going Works 

Summary: 

DDDAS enables a predictive model for characterizing the evolution in 

particle size and shape during a self-assembly process 

DDDAS empowers on-line model update and adaptive TEM triggering 

that makes better use of expensive resources 

DDDAS framework leads to elimination of 9 out of 15 potential TEM 

operations while maintaining good predictive powers. 

 
Future plan: 

Our next target is to make use of the dynamic modeling capability  

enabled by DDDAS to develop a model-predictive control that can  

potentially steer the nanoparticle self-assembly process as desired. 
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