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Outline 
• Two Motivations 

• Advanced SSA Data Association for Radar Sensing 
• Extremal Field Maps For Multi-Revolution Orbit Transfer 

• Impulsive, Low-Thrust, and Hybrid 

 

• Recent Advances in Solving the Fundamental Initial and 
Two-Point Boundary Value Problem of Astrodynamics:   
Integral Path Iteration Methods 
• Comparisons to State-of-Practice Algorithms 

 

• Regularization, Insights & Consequences Thereof 
• KS Regularization 
• Regularized Orbit Elements 

 

• Some Examples & Impacts 

2 



Data Association 101 for Radar Data 
• Radar Data Association Problem has >N2 

complexity, if we test preliminary orbit hypotheses 
using all possible observation pairs. 
 

• For short arc case (fraction of an orbit), the  
problem is much easier than multi-orbit case. 
 

• Computation time for each hypothesis test is 
dominated by orbit propagation cost implicit  
in Lambert solution process. 
 

• Three Coupled Important Challenges:   

• For longer arcs, approximation errors  
in the Keplerian Lambert solution are larger  
than measurement errors => not good! 
 

• Lambert algorithms using state-of-practice 
numerical propagation & high fidelity force 
models leads to SSA computing bottleneck. 

• For multi-rev case, in general, more than one  
orbit solution satisfies two positions and times. 

 

• Wish List for Research to Meet Challenges: 

• Means for much more efficient solution  
process for perturbed Lambert problem. 
 

• Means to resolve ambiguities due to  
uncertainty, and especially, due to multiplicity  
of solutions for multi-revolution case. 
 

• Desire a parallelizable & scalable approach 
 

• Seek higher fidelity hypothesis test with  
~ 100x speedup 
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Accelerated Picard Iteration 
 

• Successive path approximation method for solving nonlinear differential eqns of the form: 

• Can be rearranged without approximation to the following integral: 
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• Large domain of convergence, with a geometric convergence rate.  In discussions with Atluri,  

  we found dramatic terminal convergence speedup using an integral eqn error feedback term: 

Charles Émile Picard  
(1856-1941) 
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very signigicantly accelerates 

          Picard Iteration

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“nth iteration equation error” 



Intermediate Fidelity Model (degree & order 40 gravity) 

e = 0.125  
max
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Impact of Integral Error Feedback 
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    KS Regularizing Transformation 

Question: Will Picard Iteration (MCPI) converge better using the KS equations of motion? 

Ans: Yes, MCPI convergences faster and over a ~3x larger time interval for both IVP & BVP. 
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Cartesian Coordinates ODEs:
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erturbed motion, and 

Initial conditions must satisfy:
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KS Uniqueness Challenges 
(for the perturbed Lambert problem) 

    For any given { , , , , , }, there is an infinity of   

    -vectors that must lie on a 4D feasible -space curve know

x y z x y z geometrically feasible

Kustaanheimo - Stiefel Transformation Uniqueness Th

u

eorem

u n as a  .   fiber

Feasible 

fiber 

The 4-D u-sphere  

is time-varying.  The  

instantaneous radius is  

 .ru

However, to solve a TPBVP Lambert problem u-space …There are an infinity of  

     feasible choices of geometrically compatible terminal (boundary) position coordinates on 

     the two fibers in u-space.  Question:  When I select one geometrically feasible point on  

     the left (initial) fiber, which one do we select on the right (final) fiber such that both  

     of the specified initial and final u vectors lie on the same dynamical path in u-space? 
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   fiber, then the transformed velocity  
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    same unique Cartesian space trajectory t tr r

What does it mean for solving initial value problems? 

     It means                   from any geometrically feasible initial u-position, with                                                

     will generate (upon inverse transformation) the correct physical solution of a general initial value problem. 

             =>   This truth is well-known in the literature and is the main use of the KS transformation.  
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MCPI BVP Algorithm Has ~3x Increased Domain of Convergence 
using the KS ODEs Compared to Cartesian ODEs 

Convergence is Independent of Eccentricity 

Numerical MCPI Validations IVP 

 
Theoretical Convergence for IVP 

 
Theoretical Convergence for BVP 

Cartesian coordinates 

Cartesian coordinates 
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Efficiency of KS Lambert MCPI vs State of the Practice 
for Fractional Orbit Case (40,40 Spherical Harmonic Gravity) 

KS MCPI more efficient in serial computation. 
Important: ~50x additional speedup  

Due to parallel structure of MCPI.  
(GJ8 and RKN(12)10 not amenable to parallelization) 
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A Specific Orbit Transfer…. 
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Extremal Field Maps (EFMs):  Multiple Solutions  
of the Perturbed Lambert Problem => “Visibility of Reachability”  

(40,40 Spherical Harmonic Gravity Field)  
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Fraction of one orbit 
of  orbit transfer vehicle 

1 <  “laps”  <  2 orbits 
of  orbit transfer vehicle       

2 <  “laps”  < 3 orbits 
of  orbit transfer vehicle 

3 <  “laps”  < 4 orbits 
of  orbit transfer vehicle 

4 <  “laps”  < 5 orbits 
of  orbit transfer vehicle 

Pink Regions 
are Unreachable 
for V < 3 km/s  

Amenable to Massive Parallelization 
• A Quick Look over large domain can be near-instantly 

generated using Keplerian Lambert Solver 

• Can them zoom on ROIs & include full force model 

Near Real Time EFMs Have Important Utility: 
=> Near Real Time Mission Planning (… on-board?)  

=> Obtain Quick SSA Answers…  Questions Such As  

• Who can reach whom?  For how much V?  When? 
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Equinoctal Variation of Parameters 

Transformation from Equinoctal to classical elements: 
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We seek to minimize: 
 
 
 

     Subject to: 
 

                                                     , with                                                                 , and e0 and ef specified. 
 

 
     The Hamiltontion is ….                         The optimal steering unit vector that minimizes H is 
 

                                                                                                                u 

 
 
    The co-state is governed by the differential equation: 
 
           
 
   The 6 unknown initial co-states and the unknown final time are determined to satisfy the  
   terminal state e(tf) = ef, and H(tf)=0.  This two-point boundary value problem is highly nonlinear  
   and requires a good starting solution …. determined by a direct optimization method.                                                                      
                                                                                                      

Optimal Multi-Rev Low-Thrust Orbit Transfers 

0,    ( ) is unknown.t
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Near Minimum Time Low 
thrust Orbit Transfer 
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Near Planar Min Time Low Thrust Orbit Transfer 
(much smaller plane change, shorter maneuver time) 

     
 
      Optimal Control Steering Vector Components  

                (radial, transverse, and orthogonal) 
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Outline 

 • Two Motivations 
• Advanced SSA Data Association for Radar Sensing 
• Extremal Field Maps For Multi-Revolution Orbit Transfer 

• Impulsive, Low-Thrust, and Hybrid 
 

• Recent Advances in Solving the Fundamental Initial and Two-Point Boundary 
Value Problem of Astrodynamics:   
Integral Path Iteration Methods 
• Comparisons to State-of-Practice Algorithms 

• Established significant new insights, formulations and computational methods to accelerate  
fundamental astrodynamics computations:  orbit propagation and solution of Lambert’s problem. 

• >3x efficiency for serial implementation, ~10x to 50x further increase feasible via parallelization. 
 

• Regularization, Insights & Consequences Thereof 
• KS Regularization 

• Found important insights to resolve ambiguities in solving the KS Lambert Problem. 

• Regularized Orbit Elements 
• Regularization enhances Picard Iteration for both initial and two-point boundary value problems. 

 

• Some Examples & Impacts 
• Demonstrated a parallelizable and Scalable  Approach for near real time computing of 

Extremal Field Maps for enhanced SSA, Mission Planning, etc. 
• Impulsive orbit transfers 

• Continuous low thrust orbit transfers 

• Hybrid thrust orbit transfers 16 
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