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Motivation

PolSAR images are obtained in four scattering channels:
I Determined by polarization of the transmitted and scattered wave.

PolSAR provides more information about the target.
Transionospheric SAR is prone to distortions caused by plasma.
Faraday rotation (FR) is a rotation of the polarization plane:

I Due to gyrotropy of ionospheric plasma in the geomagnetic field;
I Affects both transmitted and scattered signals as they propagate.

If the FR angle is known, then the effect of FR on SAR is mitigated
by a linear transformation applied to the four imaging channels:

I Assuming that every part of the signal is rotated by the same angle.

However, the FR angle is a function of the propagating frequency:
I Different parts of the signal are rotated by different angles (twisting);
I This effect will be called the differential Faraday rotation (dFR).
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Polarimetric matched filter (PMF)

For the variation of FR angle ∼ π, the polarization information is
compromised, and traditional correction becomes inadequate:

I Image distortions due to dFR/twisting can be substantial.

Polarimetric matched filter (PMF) addresses the twisting effect:
I Takes into account all channels at the signal processing stage;
I Contrary to the traditional approach that does the post-processing.

PMF essentially eliminates image distortions due to dFR.
Coupled processing of channels has been introduced previously
[Voccola 2013], [Wright 2003], although not in the context of dFR.
FR may have an adverse effect on single-polarization SAR as well:

I Difficulties related to amplitude variation and poor conditioning of
reconstruction.

Quad-pol case, which is a more comprehensive imaging scenario,
also allows for a more efficient solution of the dFR problem.
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Faraday rotation (FR) in a homogeneous plasma

Monochromatic linearly polarized incident EM wave with no FR
(from the antenna at x to the target at z ):(

Ei
H

Ei
V

)
(t, z ) = e−iω(t−Rz /vph)

(
Ei

H
Ei

V

)
(t,x ), where Rz = |z − x |.

FR is a slow rotation of the polarization plane:

ϕF = −Rz

2c
ω2

peΩe cosβ

ω2 , where ω2
pe =

4πNee2

me
, Ωe = −e|H0|

mec
,

and β is the angle between the propagation direction and H0.
Propagation with FR:(

Ei
H

Ei
V

)
(t, z ) = e−iω(t−Rz /vph)R(ϕF) ·

(
Ei

H
Ei

V

)
(t,x ),

where R is the rotation matrix: R(ϕF) =

(
cosϕF sinϕF
− sinϕF cosϕF

)
.

S. Tsynkov (NCSU) Differential Faraday rotation and PolSAR AFOSR, 1/10/18, Arlington, VA 5 / 26



Scattering by a point target

Point target at z with the scattering matrix S:(
Es

H
Es

V

)
(t, z ) =

(
SHH SHV
SVH SVV

)
·
(

Ei
H

Ei
V

)
(t, z ).

Propagation back to the antenna at x :(
Es

H
Es

V

)
(t,x ) = e−iω(t−2Rz /vph)R(ϕF) · S · R(ϕF) ·

(
Ei

H
Ei

V

)
(t,x ).

Data matrix M — response to two basic linear polarizations:

M(t) =

(
MHH MHV
MVH MVV

)
= e−iω(t−2Rz /vph)R(ϕF) · S · R(ϕF).

As R(ϕ1 + ϕ2) = R(ϕ1) · R(ϕ2), we obtain the reconstruction:

S = eiω(t−2Rz /vph)R(−ϕF) ·M(t) · R(−ϕF).

Valid even when incident and scattered field are ≈orthogonal.
Idealized case: Rz , ωpe, H0 need to be known.
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Polarimetric imaging in 1D
Interrogating waveforms are linear frequency modulated (LFM)
pulses, i.e., chirps:(

Ei
H

Ei
V

)
(H,V)

(t, x) = E(H,V)A(t)e−iω0t,

where the two basic polarizations, horizontal and vertical, are

E(H) =

(
E0
0

)
and E(V) =

(
0

E0

)
,

and the chirp envelope is

A(t) = χτ (t)e−iαt2 , χτ (t) =

{
1, t ∈ [−τ/2, τ/2],

0, otherwise.

Instantaneous frequency for LFM signals:

ω(t) = ω0 + 2αt = ω0 +
B
τ

t, |t| ≤ τ

2
,

where α is the chirp rate and B = 2ατ is the bandwidth.
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Incident field

The signals propagate parallel to the magnetic field: cosβ = ±1.
The propagation is dispersive and subject to FR:(

Ei
H

Ei
V

)
(H,V)

(t, z) = Aδ(t − Rz/vgr(ω0))e−iω0(t−Rz/vph(ω0))R(ϕ̆F) ·E(H,V),

where
Aδ(t) = χτ−δτ (t)e−i(α+δα)t2 , δτ =

B
ω0

Rz

c
ω2

pe

ω2
0
, δα = α

δτ

τ
,

and

vph =
√
ω2

pe + k2c2/k, vgr = kc2/
√
ω2

pe + k2c2, k =
√
ω2 − ω2

pe/c.

The velocities do not depend on H0 because |Ωe| � ωpe � ω0.
The FR angle for LFM signals is no longer constant — dFR:

ϕ̆F(t, z) = −Rz

2c
ω2

peΩe

ω2(t − Rz/vgr(ω0))
.
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Single-pulse image of a point target

The received signal:

M(t) = e−iω0tph(t,z)A2δ(tgr(t, z))R(ϕF(t, z)) · S · R(ϕF(t, z)),

where

tph,gr(t, z) = t − 2Rz/vph,gr(ω0) and ϕF(t, z ) = −Rz

2c
ω2

peΩe

ω2(tgr(t, z))
.

The reconstruction of the scattering matrix:

S = eiω0tph(t,z)A2δ(tgr(t, z))R(−ϕF(t, z)) ·M(t) · R(−ϕF(t, z)).

The right-hand side does not depend on t (by substitution of M).
S can be obtained from M(t) ∀t such that |tgr(t, z)|6(τ − 2δτ)/2.
Using the entire interval, we obtain the image:

I =

∫
eiω0tph(t,z)A2δ(tgr(t, z))R(−ϕF(t, z)) ·M(t) · R(−ϕF(t, z)) dt.

The integrand is constant: I = (τ−2δτ)S (no spatial dependence).
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Distributed target: S = S(z)

The received signal:

M(t) =

∫
e−iω0tph(t,z)A2δ(tgr(t, z))R(ϕF(t, z)) · S(z) · R(ϕF(t, z)) dz.

The image is obtained by polarimetric matched filter (PMF):

I(y) =

∫
eiω0tph(t,y)A2δ(tgr(t, y))︸ ︷︷ ︸

traditional scalar matched filter

R(−ϕF(t, y)) ·M(t) ·R(−ϕF(t, y)) dt.

The dependence of ϕF on t is assumed known (requires ωpe, Ωe).
The imaging operator S(z) 7→ I(y):

I(y) =

∫
dz eiΦ

∫
A2δ(tgr(t, y))A2δ(tgr(t, z))R(∆ϕF) · S(z) ·R(∆ϕF) dt,

where Φ = −2k0(y− z), k0 = k(ω0), ∆ϕF = ϕF(t, z)− ϕF(t, y).
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The point spread function (PSF)

The PSF is the kernel of the imaging operator:

Wiklj(y, z) = eiΦ
∫

A2δ(tgr(t, y))A2δ(tgr(t, z))Rik(∆ϕF)Rlj(∆ϕF)dt,

so that Iij(y) =
∑

kl

∫
Wiklj(y, z)Skl(z) dz, i, j, k, l ∈ {H,V}.

In the case of single polarization, W is a scalar:
I Ideally, one would want to have W(y, z) ∝ δ(y− z);
I In reality, it is not possible due to various constraints (bandwidth);
I Practical systems are subject to limitations (resolution, sidelobes).

In the quad-pol case, W is a rank 4 tensor:
I The ideal form of its individual entries is still Wiklj ∝ δ(y− z);
I Polarimetric fidelity: are the different channels really separate?
I The higher the fidelity, the closer the PSF to Wiklj ∝ δikδlj;
I All other non-zero entries represent cross-channel contamination.

In the presence of FR, there is always some contamination.
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PMF vs. traditional polarimetry

Traditional polarimetric reconstruction consists of two stages.
1 Scalar matched filter is applied to individual channels:

Ypq(y) =

∫
eiω0tph(t,y)A2δ(tgr(t, y))Mpq(t) dt, pq ∈ {HH,HV,VH,VV}.

2 The rotation matrices are applied to intermediate images Ypq:

Itrad(y) = R(−ϕ∗F) · Y(y) · R(−ϕ∗F).

The FR angle ϕ∗F is constant as if the signal were monochromatic:

ϕ∗F = −
ω2

peΩe

2c
R∗

ω2
0
, where R∗ = z∗ − x, z∗ is fixed.

The imaging operator is the same as before, but ∆ϕF changes:
∆ϕ∗F = ϕF(t, z)− ϕ∗F.

Because of dFR, traditional PolSAR involves a filter mismatch:
I It exists even for a known point scatterer: S(z) = S0δ(z− z0);
I Then, PMF is fully matched, but ∆ϕ∗F 6= 0 for all t even if z0 = z∗.
I Then, Itrad(z0) may, e.g., have a non-zero entry where S0 has zero.
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Equivalent 4× 4 representation

It is convenient to recast the imaging operator as follows:

I (y) =

∫
W(y, z) · S(z) dz,

where I (y) = (IHH, IHV, IVH, IVV)T, S(y) = (SHH, SHV, SVH, SVV)T, and

W(y, z) = eiΦ
∫

A2δ(tgr(t, y))A2δ(tgr(t, z))V(∆ϕF) dt,

V(φ)
def
=


cos2 φ − cosφ sinφ cosφ sinφ − sin2 φ

cosφ sinφ cos2 φ sin2 φ cosφ sinφ
− cosφ sinφ sin2 φ cos2 φ − cosφ sinφ
− sin2 φ − cosφ sinφ cosφ sinφ cos2 φ

 .

The ideal form of the 4× 4 matrices V(∆ϕF) and W(y, z) is
diagonal, which is achieved if ∆ϕF = 0.
In the presence of FR, this condition does not hold unless y = z.
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Imaging kernel for the PMF

The imaging kernel (recall, ∆ϕF = ϕF(t, z)− ϕF(t, y)):

W(y, z) ≈ V
(
∆ϕF(ω0)

)
eiΦ
∫

A2δ(tgr(t, y))A2δ(tgr(t, z)) dt︸ ︷︷ ︸
encountered in the scalar case

≈ V
(
∆ϕF(ω0)

)
τeiΦχBτ (ξ)

(
1− 2|ξ|

Bτ

)
sinc

[
ξ
(

1− 2|ξ|
Bτ

)]
︸ ︷︷ ︸

W(Bτ)(ξ) — PSF for single-channel imaging

,

where ξ = B(y− z)/vgr(ω0).
The difference of rotation angles can be represented as

∆ϕF(ω0) =
2Cτ
Bτ

ηξ, where Cτ = O(1)

and
η =
|x|
2c
ω2

peΩe

ω2
0
· 2B
ω0
≡ −ϕF0 ·

2B
ω0

is a typical scale of the total FR angle times relative bandwidth.
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Imaging kernel for the PMF (cont’d)

The 4× 4 matrix W has only three different entries:

W =


W0 −W1 W1 −W2
W1 W0 W2 W1
−W1 W2 W0 −W1
−W2 −W1 W1 W0

 ,

where

W0(ξ, η) = cos2
(2Cτ

Bτ
ηξ
)

W(Bτ)(ξ),

W1(ξ, η) = cos
(2Cτ

Bτ
ηξ
)

sin
(2Cτ

Bτ
ηξ
)

W(Bτ)(ξ),

W2(ξ, η) = sin2
(2Cτ

Bτ
ηξ
)

W(Bτ)(ξ).

For high compression ratio: Bτ � 1, and |ξ| 6 π (main lobe):

W0 ≈ τeiΦsincξ and |Wp| = O
(
τ · (Bτ)−p), p = 0, 1, 2.
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Performance of the PMF: scalar part

Commonly used scalar metrics: resolution and ISLR.

Resolution is semi-width of the main lobe; if W ∝ sinc ξ: ∆R =
πc
B

.

ISLR describes the spreading, i.e., geometric contamination:

ISLR(W) = 10 log10

[(∫
|ξ|>π

|W(ξ)|2 dξ
)(∫

|ξ|6π
|W(ξ)|2 dξ

)−1
]
.

For W ∝ sinc ξ, ISLR≈-9.68dB⇒ 90% of energy in the main lobe.
For the more general PSF W(Bτ)(ξ), we also have ISLR≈-9.7dB.
For the matrix PSF W, its diagonal entry W0 =cos2(2Cτ

Bτ ηξ)W(Bτ)(ξ).
For the typical case of |η| . 1, ISLR(W0) may differ by 0.1dB:

I Hence, 90% of the total power of W0 is in its main lobe as well.

What about the vector metrics of performance?
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Performance of the PMF: vector part

Cross-channel contamination is due to off-diagonal entries of W.
Relative magnitude of the off-diagonal entries:

‖W− D‖ · ‖D‖−1, where D = daig W.

As W = W(ξ, η), we integrate with respect to ξ:(∫
‖W− D‖2dξ

)(∫
‖D‖2dξ

)−1

=

(∫ (
2|W1(ξ, η)|2 + |W2(ξ, η)|2

)
dξ
)(∫

|W0(ξ, η)|2dξ
)−1

,

and leave η as the parameter that characterizes the dFR effect:
I Square of the Frobenius norm is used for convenience;
I Superficially similar to what sits under the log in ISLR;
I Integration limits will specify different metrics of contamination.
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Point-based polarimetric contamination metric

This metric, PPCM, is designed for point targets:
I Quantifies the distortions in a given channel due to contributions

from other channels at the same point (as opposed to sidelobes);
I One should integrate over the main lobe of the diagonal entry:

PPCM(W, η) = 10 log10

[(∫
|ξ|6π

(
2|W1(ξ, η)|2 + |W2(ξ, η)|2

)
dξ
)

·
(∫
|ξ|6π

|W0(ξ, η)|2dξ
)−1]

.

For |η| . 1, the numerator is small, ∼ πτ 2(Bτ)−2, because Bτ � 1.
The denominator is ∼ 0.9πτ 2.
For a sample P-band system, we take Bτ = 2π · 400, which yields:

PPCM(W, η) ≈ −60dB.

Negligible for all practical purposes.

S. Tsynkov (NCSU) Differential Faraday rotation and PolSAR AFOSR, 1/10/18, Arlington, VA 18 / 26



Area-based polarimetric contamination metric

This metric, APCM, is designed for distributed targets:
I Intensity at a given point includes sidelobes of neighboring points;
I To account for sidelobes, one should integrate over the entire real

axis:

APCM(W, η) = 10 log10
2‖W1‖2

2(η) + ‖W2‖2
2(η)

‖W0‖2
2(η)

.

The numerator is, again, small, but this time around, ∼ (Bτ)−1.
Altogether,

APCM(W, η) . 10 log10

(
1

Bτ
4
π

(
2C2

τη
2 +

1
3

C4
τη

4
))

.

For the typical system parameters, this yields (even if |η| ∼ 1):

APCM(W, η) . −30dB.

For |η| � 1, the values of APCM(W, η) are considerably smaller.
Much larger than PPCM, yet still negligible for most practical
purposes.
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Performance of traditional polarimetry

Uses a certain value of FR angle ϕ∗F that is assumed constant.
For arbitrary values of η:

APCM(W, η) = 10 log10
5− sinc 2η − 4sinc η
3 + 4sinc η + sinc 2η

.

For |η| � 1, this reduces to APCM(W, η) ≈ 10 log10
η2

6
.

PMF has a factor of (Bτ)−1 � 1.
PPCM is obtained numerically.
Polarimetric fidelity of the PMF is
far superior to that of traditional
polarimetry.
Other metrics, beyond PPCM
and APCM, may be useful.
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Full-fledged PolSAR

The space is 3D; the target is 2D.
Aperture is synthesized by emitting identical pulses from equally
spaced locations along the orbit, x n = (xn

1,−L,H), |xn
1| ≤ LSA/2:(

Ei
H

Ei
V

)n

(H,V)
(t,x n) = E(H,V)A(t − tn)e−iω0(t−tn).

The propagation direction is not necessarily parallel to the
magnetic field (β 6= 0)⇒ there will be dFR in slow time tn.
Electron number density may vary with altitude, Ne = Ne(h):

ϕF = − Ωe cosβ

2cω2 cos θ

∫ H

0
ω2

pe(h) dh︸ ︷︷ ︸
∝ TEC

= −Rz

2c
ω̄2

peΩe cosβ

ω2 .
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Full-fledged PolSAR (cont’d)

Let Rn
z = z − x n, Rn

z = |Rn
z |, and eH = H0/|H0|. Then,

ϕn
F(t, z ) = −(Rn

z , eH )

2c
ω̄2

peΩe

ω2(t − 2Rn
z/v̄gr(ω0))

.

The received signal for monostatic imaging:

M(t,x n) = χ
LSA

(xn
1 − z1)

∫
e−iω0t

n
ph(t,z )A(tngr(t, z ))

R(ϕn
F(t, z )) · S(z ) · R(ϕn

F(t, z )) dz .

The image is obtained by means of a filter that matches the phase
and rotation angle of the received signal in fast and slow time:

I(y) =
∑

n

χ
LSA

(xn
1 − y1)

∫
eiω0t

n
ph(t,y)A(tngr(t,y))

R(−ϕn
F(t,y)) ·M(t,x n) · R(−ϕn

F(t,y)) dt.
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Full-fledged PolSAR (cont’d)

The imaging operator:

I (y) =

∫
W(y , z ) · S(z ) dz .

The kernel is factorized:

W(y , z ) = V(∆ϕF)eiΦ0WA(ξA)WR(ξR),

where

WA(ξA) = χ4πF(ξA)N
(

1− |ξA|
2πF

)
sinc

[
ξA

(
1− |ξA|

2πF

)]
,

WR(ξR) = χBτ (ξR)τ
(

1− 2|ξR|
Bτ

)
sinc

[
ξR

(
1− 2|ξR|

Bτ

)]
,

Φ0 = −2k0(y2 − z2) sin θ, ξA = k0(y1−z1)LSA
R , ξR = B(y2−z2) sin θ

v̄gr(ω0) , and
F = L2

SA/(Rλ0) is the Fresnel number for the aperture of size LSA.

∆ϕF ≈
1

2πF
ηAξA +

2CR

Bτ
ηξR, where ηA = −ϕF0(eH , e1)

LSA

R
, CR ≈ 1.
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Performance estimates
ACPM for the PMF in the case of a full-fledged PolSAR:

APCM(W, ηA, η) ∼ 10 log10

[
max

(η2
A
F
,

C2
Rη

2

Bτ
,
η4

A
F
,

C4
Rη

4

Bτ

)]
.

Represents the "worst case scenario" as PPCM is (much) smaller.
For |ηA| ∼ |η| . 1 and F ∼ Bτ � 1, the resulting estimate is
roughly the same as that for the single-pulse imaging.

The key conclusion stays: PMF
yields low level of distortions.
For traditional PolSAR, the error
(APCM) is significant if at least
one of the dFR parameters, |ηA|
or |ηR|, is not small.
Again, polarimetric fidelity of the
PMF is far superior to that of
traditional PolSAR.

S. Tsynkov (NCSU) Differential Faraday rotation and PolSAR AFOSR, 1/10/18, Arlington, VA 24 / 26



Discussion: what do those decibels mean?

As a minimum, the reflectivity in a given channel should contribute
mostly to the received signal in the same channel:∥∥W1

∥∥2
2 �

∥∥W0
∥∥2

2,
∥∥W2

∥∥2
2 �

∥∥W0
∥∥2

2.

Hence, APCM should be a sufficiently large negative number.
Polarimetric applications. The reflectivity in different channels may
differ by up to 10dB. To prevent contamination by a stronger
channel, the threshold should be reduced further:

APCM(W)� −10dB.

Applications of PolSAR interferometry. The bare soil reflectivity in
one channel may be 20 to 30dB smaller than that from vegetation
in a different channel. This lowers the threshold even further:

APCM(W)� −20dB.
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Discussion (cont’d)

For a P-band system, ω0/2π=300MHz, B/2π=8MHz, τ=5·10−5s,
θ = 60◦, and relatively high TEC of 5 · 1013cm−2, the error of the
traditional PolSAR reconstruction is (for a specific direction of H0):

APCM(W) ≈ −11dB.

PMF will reduce APCM by ∼10 log10 Bτ , i.e., by more than 30dB.
The contemplated BIOMASS mission:

ω0/2π = 435MHz, B/2π = 6MHz, H = 670km, θ = 30◦.

For traditional PolSAR we obtain a borderline value of

APCM(W) ≈ −25dB.

Yet the PMF will put APCM safely below all thresholds.
More subtle criteria may be needed, to handle the odd/even
nature of the various entries of W — double intensity peaks.
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