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Two Goals:

1. Account for dynamics/actuation in sensor placement
2. Account for different sensor costs and performance



Control systems: Respecting Dynamics in Sensor Placement

® Consider the system
X = Ax + Bu
y = Cx.

* The controllability and observability Gramians are given by:
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* Their eigendecompositions define the directions in which the system is most
controllable and observable.



Apply a balancing transformation, changing to a basis where the system is
maximally jointly controllable and observable.
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Manohar, Kutz, and Brunton (2018). Optimal Sensor and Actuator Placement Using Balanced Model Reduction.



QR decomposition

* Perform the column-pivoted QR decomposition on ¥:
v!pl = QR.

where Q € R is orthogonal, R € R™*" is upper triangular, and P is made up of
rows of the identity.

* This is achieved by iteratively applying Householder transformations to make ¥’
upper triangular.

e At each step, the transformation is applied to the column with the largest norm,
indexed by P.

* For p sensors, taking the measurement matrix to be the first p rows of P provides
nearly-optimal sensor locations by approximately maximizing the volume of space
spanned by the sensors.

Drmac and Gugercin (2016). A new selection operator for the discrete empirical interpolation method—improved a priori error bound and
extensions.



Incorporating a cost function

* Now assume there is some non-negative cost function on sensor location, f € R"

*  We modify the column-pivoted QR decomposition algorithm:
e At the Athjteration, pivot about the column i that maximizes

(@ F —~ 1,

where 7 is a scalar and (¢7)*is the submatrix that remains to be made upper
triangular. (3
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* Place sensors by performing the modified column-pivoted QR decomposition on the
truncated balancing modes ¥’

* Place actuators by performing QR on the truncated adjoint modes <I>7T.

Error
Reconstruction error for a 25-dimensional randomized control system with gaussian cost function. Colored points
represent results from placing 7 principled sensors as the cost function is weighted more heavily. Gray points show
every other permutation of sensor arrays.



Example
* Damped mass-spring system:
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* The it mass has the equation of motion
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e The full system evolves as m; = k(x;—1 + xj+1 — 2x;) + b(Ti—1 + Tj21 — 22;) + fi
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Sensor cost

Sensor performance
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Multi-fidelity sensor placement

* Consider a large system whose full state we want to estimate from sparse measurements.

* Assume there are two types of sensors: Cheap sensors with high noise levels, and expensive ones
with less noise.

*  Where should we place the sensors to get the best reconstruction?




Background

First, consider the case of sensor
placement without noise.

Rewrite the full statex by choosing a new

basis ¥:
x = WYa.

Sparsely sample. Collect measurements y
at the locations indexed by C:
y = CWPa = Oa.

Given y, get an estimate 3 of the
coefficients: . t
a=0y.

<

Design Cand ¥to get the best min ||a — &||,.

reconstruction possible, i.e.

Manohar et al (2017). Data-driven sparse sensor placement for
reconstruction.



Building a basis

e Assume we have m snapshots in time of the full state. Organize them into
a snapshot matrix

X=| X1 X9 ...X,,
 We take W to be randomized linear combinations of the X;, & = XG, G

where has Gaussian i.i.d. entries. We take twice the number of modes as
sensors. This seems to provide a good balance between order reduction

and information retained. ve o X
ij D| '
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Halko, Martinsson, and Tropp (2011).




Choosing sensor locations

Perform column-pivoted QR decomposition on ¥T:

vTpt = QR,
where Q is orthonormal, R is upper triangular, and P is made up of rows of the
identity matrix.

* For p sensors, the first p rows of P are nearly-optimal sensor locations.

* This is because the column-pivoted QR decomposition greedily maximizes the
determinant of ©. This is called D-optimal design.

* This also minimizes the condition number of ®, which leads to stable
reconstructions that are robust to noise.

Drmac and Gugercin (2016). A new selection operator for the discrete empirical interpolation
method—improved a priori error bound and extensions.



Multifidelity sensors
Now, the measurements are given by
y = Oa+e,

where the noise vector € can have two values, €; € {Uea O-C}a with e < O¢ being
the noise levels of the expensive and cheap sensors, respectively.

We still choose the sensor locations using the column-pivoted QR decomposition.

* For now, we place p_ cheap sensors at 0.1
the first p. QR indices, and p_ expensive Eig o E:I 82 [':j:g:;
sensors at the remaining QR indices. 0.09¢

* As shown on the right, this leads to better 0.08
reconstructions at a large number of u%

Sensors. 0.07 ¢

0.06

Reconstruction errors using between 1 and 200 cheap
sensors (0c = 5%, cost_ = 1), with an additional 10
expensive sensors (0, = 1%, cost, = 10), placed on 095
either the first or last QR indices.
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Example

* NOAA weekly sea surface temperature data 1990-2016.
(https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html)
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Example

The figure shows reconstruction error and cost using only one type of sensor.
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Now add on additional low-noise sensors to an existing set of noisy sensors.

The left plot demonstrates that this improves reconstruction performance, but the right
plot shows that the price may not be worth it.

Cheap sensors have noise level 5% and cost 1. Expensive sensors have noise level 1% and
cost 10.
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Error

* Performance varies greatly with parameters. Depending on noise levels, costs, budget,
and type of data, it may be best to have all cheap sensors, all expensive sensors, or a mix
of both. Whether to put expensive sensors on the first or the last set of QR pivots is also
parameter dependent.

* Below are SST reconstruction errors with a set budget of 100. Expensive sensors have
noise level 6, = 1% and cost 10, while cheap sensors have cost 1.
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Conclusions & Future directions

* The column-pivoted QR decomposition can be used for sensor placement and modified
to include a cost on sensor location.

 We now extend the cost-modified QR decomposition for sensor and actuator placement
for control systems.

* The algorithm identifies sensor and actuator arrays with simultaneously good
performance metric and low cost.

» Systems are highly dependent on the noise and cost ratios of the two types of sensors.
Ultimately, we want to learn a principled method for knowing how many of each type of sensor
should be placed where, given only costs, noise levels, training data, and a budget.

e Other considerations:
— Add in a cost function on spatial location.
— Consider more than two types of sensors.
— Explore sensors with different time resolutions.



