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Signal Rank

Active scenario with K = 2 transmitters and M = 3 receivers
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The illuminating signals s1 and s2 are linearly independent

Each is scattered non-isotropically by the target

Alternatively, the target may be a non-isotropic active emitter (e.g., in
passive sonar or electronic surveillance)
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Signal Subspace in Multi-receiver Processing

Scenario with K = 2 linearly independent transmitters and M = 3 receivers
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In the absence of noise, each receiver collects a different linear combination of the
illuminating signals

The matrix of collected data thus has the form

R = [a11s1 + a12s2 a21s1 + a22s2 a31s1 + a32s2]

Its rank (K = 2) is reflected in its singular values; with noisy channels, standard
estimators of signal rank are based on the spectrum of R†R
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Grassmannians and Projective Space

With K ≤ N, the collection of all K -dimensional subspaces of an
N-dimensional vector space V forms the Grassmannian G (K ,N)

G (K ,N) is a Riemannian manifold of dimension K (N − K )
It is covered, except for a set of zero Haar measure, by one coordinate
chart
An integral over G (K ,N) can be calculated by integrating over a single
chart

There is a one-to-one correspondence between K -dimensional
subspaces of V and points on G (K ,N)

Choosing a K -dimensional subspace of V “at random” supposes a
probability law on G (K ,N)
The probability of a collection of K -dimensional subspaces V can be
obtained by an integral on G (K ,N)

In some of what follows, we focus on the important special case of
rank-one signals

G (1,N) is called projective space, denoted PN−1
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Exploiting Signal Subspaces

Recall the “matched filter” detection statistic for a known signal S in
additive ZMWGN projects the data vector X into the one-dimensional
subspace spanned by S

Higher-dimensional signal subspaces play similar roles in the solution of
multi-channel detection problems

If it is known a priori, it may be exploited directly
If only its dimension is known, the subspace may be estimated from
collected data
The dimension, if unknown, may also be estimated from data

Bayesian subspace and rank estimators use prior distributions on G (K ,N)

Signal subspaces are of fundamental importance in multi-sensor processing, and prior

distributions on the Grassmannian are valuable in estimating them from sensor data. We

propose iterative subspace estimator for dynamic scenarios – a Kalman-filter-like estimator

on the Grassmannian for tracking temporally evolving signal subspaces.
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Iterative estimation

Recall the Kalman filter on Rd :

1 The (post-measurement) state at time t−1 is a normal distribution N [Mt−1,Σt−1]

2 This state is propagated through a linear dynamical system with additive Gaussian
noise to obtain a pre-measurement state at time T ; due to linearity, this state is
also Gaussian

3 A linear measurement with additive Gaussian noise is taken at time t

4 Bayes’ rule is used to produce a post-measurement (posterior) distribution from
the pre-measurement state and the measurement; the linear and Gaussian
assumptions meant this state is also Gaussian, N [Mt ,Σt ]

From a Bayesian perspective, the Gaussian model is the maximum-entropy
distribution on Rd with given covariance

The linear-Gaussian dynamical and measurement models ensure everything remains
Gaussian

Thus propagation of the state can be reduced to equations in the mean and
covariance (i.e., Riccati equations)
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Iterative estimation on G (K ,N)

Elements of an iterative estimation algorithm for tracking:

An invariant measure and integration method G (K ,N)

X Borrowed classical work by A. T. James and recent formulations by S.
Howard

A maximum-entropy family of probability distributions on G (K ,N)

X Completed for G (1,N) = PN−1

Suitable dynamical models

X Initially using constant-speed propagation on geodesics
X Seeking to extend to models inspired by sensing scenarios

Measurement model

X Using standard multi-channel measurement model with Euclidean
measurements mapped to PN

Bayesian update of state from measurements

X Achieved for PN ; requires numerical integration
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Iterative estimation on RP1
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Iterative Estimation on RP1

The maximum entropy distribution on RP1 (with respect to a fixed
first moment) a bi-parametric distribution

p(x ;κ, µ) =
1

π [I0(κ) + L0(κ)]
eκµ

>x

Our dynamical model assumes the state at time t − 1 changes via an
action of the special orthogonal group

st = Qtst−1, Q ∈ SO(2)

which ensures the prior distribution at time t remains of maximum
entropy
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Iterative Estimation on RP1

Every time epoch, we collect m measurements in R2 of a noisy signal
whose subspace is defined by the state st ∈ RP1

Rt = stat + νt ,

where at is an m-dimensional (row) vector and νt is the additive
ZMWGN whose variance is assumed known

An update step requires
1 Transformation of measurements from R2 to RP1

2 Likelihood function of transformed measurements
3 Marginalization over RP1 (Bayes’ rule)
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Iterative estimation on RP1: Results

Tracking on RP1 with measurements in R2, which are samples of a noisy
signal whose subspace is defined by an element of RP1. Each
measurement has its SNR set to ∼ 0 dB.
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Wrap-up

Motivated by the importance of subspace information in multi-sensor
signal processing, we are developing an iterative estimator for tracking a
subspace in a dynamic scenario

Several mathematical results have been obtained, both for G (K ,N)
and for the special case of PN (i.e., for a one-dimensional subspace)

These underpin a prototype tracker on PN

Several challenges remain to devise an iterative estimator for the full
Grassmannian
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