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A Motivation Slide From 3 Years Ago

Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

For example, in networks where comms are constrained by distance,
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Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

In the presence of additional resources. ..
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A Motivation Slide From 3 Years Ago

Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

...a reactive control paradigm may provide alternative solutions. . .
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A Motivation Slide From 3 Years Ago

Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

[agents move according to original plans]
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Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
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A Motivation Slide From 3 Years Ago

Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

[resolution through edge-creation and edge-exchanges]
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A Motivation Slide From 3 Years Ago

Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

[continued motion as a group]
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A Motivation Slide From 3 Years Ago

Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

[they live happily ever after]
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A Motivation Slide From 3 Years Ago

Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

[they live happily ever after]

> ‘“very large combinatorial structure” =the space of all spanning forests on a varying set of agents.
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Why Categories of HDIs?

Emerging requirements:

» Need a rich category-theoretic “substrate” for symbolic representations of task domains
e Do not treat tasks on a case-by-case basis
e Instead, consider them as capabilities

e Generate new capabilities through composition
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Why Categories of HDIs?

Biginnings of An Example Structure: Provided the data

o finite set of agent labels V,
e compact workspace with piecewise smooth boundary Q C RY,
e spanning forest F € (%),

form the space X(V, F) C QF of particle configurations (x,),ecy in which any two F-neighbors
are R-close.
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Why Categories of HDIs?

Biginnings of An Example Structure: Provided the data

o finite set of agent labels V,

compact workspace with piecewise smooth boundary Q C R,
spanning forest F € (%),

form the space X(V, F) C QF of particle configurations (x,),ecy in which any two F-neighbors
are R-close.

>
>

Each X(V, F) supports all distributed controllers requiring communications along F.
Removing an interaction e € F means applying a jump from X(V, F) to X(V, F — e),
removing the access of the agents in Je to information about each other.

Losing an agent v € V means applying the restriction from X(V, F) to X(V — v, F — v),
losing the adjacent edges of F in the process.

A point y € X(V', F') for VNV’ = & gives rise to a jump X(V,F) = X(VUV',FUF').
Expanding or shrinking Q (e.g., adding/removing obstacles, digging tunnels) alters the
safety constraints on all agents.
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Why Categories of HDIs?

Example Capability C(V, F, ¢, x*): For specified ¢(f) € f, f ranging over the components of
the forest F, execute a controller that brings each x) to a designated target x¢* € 2 while
keeping the system state in X(V, F), from almost all initial positions in €.

~~ components of F follow their designated leaders

» C(V,F,f,x") is a compositional extension of C({x},2,*,x7): if nQx Q=R is a
continuously varying navigation field? with target y, then C(V, F,¢, x*) is realized by the
closed-form distributed controller

r —Zz 4 2
Up 2 50 S )0 (X, %), &(y, 2) & “lzl (1)

if p is not a leader, and u, = yn(x¢", x,) if p is the leader of component f of F, provided
Y is sufficiently small. ~~ If one agent can navigate 2, so can a tree of agents

2subject to some conditions
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Why Categories of HDIs?
Instances of C(V, F, ¢, x*).

Ly o comrt i o

> This capability did not exist in the literature prior to our work in [1,2], even for holonomic
single integrator agents.

» The main point is that the composition operator requires no knowledge of Q: the
computational burden is offloaded onto n and distributed between the agents.
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Proposed Program

We seek a CATECORY-THEORETIC framework combining:
differential inclusions

jump/reset relations (discontinuous/switched dynamics)
sequential and parallel composition (concatenation/coupling)
maps between [open] hybrid systems

trajectories have to be maps

vVvyyVvyVvVYyyvyy

graphs may be insufficient for open systems
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Proposed Program
We seek a CATECORY-THEORETIC framework combining:
» differential inclusions
jump/reset relations (discontinuous/switched dynamics)
sequential and parallel composition (concatenation/coupling)

>
>
> maps between [open] hybrid systems
> trajectories have to be maps

>

graphs may be insufficient for open systems

HDIs on manifolds may be the right collection of objects:
» Can easily define a “graph of HDIs", to see that this collection is “self-hybridizing”.

» Especially in the open setting, a discrete action defines a non-deterministic quiver of edges
(more below).

» We aim to explore trisps (Gelfand-Manin triangulated spaces=generalized simplicial sets)
as an alternative discrete skeleton.

~~ Is there a forgetful functor to the discrete structure?
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Proposed Program

“No Abstract Nonsense”. The proposed framework must operationalize the following:
» refinement/coarsening arguments to identify behaviors/tasks

~ e.g., Template-Anchor pairs [3,4]

~~ Other hierarchical compositions [5, 6, 7]
> Stability and robustness arguments,
~~ The hybrid differential inclusions framework [8] is an example
» Computable invariants of task achievability
~~ Connect to computational Conley theory
~~ Homological invariants a-la Erdmann
> Analysis of temporal tameness properties (noZeno / goodZeno / badZeno & worse. . .)
~~ Generalized hybrid time domains / hybrid arcs

~~ Weaker topology on the space of hybrid arcs?
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Proposed Program

Directions of Study:

» Fuse the Hybrid Differential Inclusions (HDI) framework [8] with the categorical
formulations of Culbertson et. al. [4] and Lerman—Schmidt [9].

~~ toolkit for systematic reasoning about compositions of capabilities
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Proposed Program

Directions of Study:

» Fuse the Hybrid Differential Inclusions (HDI) framework [8] with the categorical
formulations of Culbertson et. al. [4] and Lerman—Schmidt [9].

~~ toolkit for systematic reasoning about compositions of capabilities
» Explore the compatibility of the new framework with computational Conley framework.
~> YET ANOTHER REASON to work with complexes/trisps instead of graphs
» Develop a functorial theory of strategy spaces over this category.
~~ Characterize tasks for which homotopy types of strategy spaces are still dichotomic

~~ For these tasks, develop a compositional complexity theory
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Strategy Spaces

Erdmann’s Strategy Spaces [10].
P> FINITE state space X
> FINITE set A of actions:

e Pairs (x, Ax), Ax C X (non-deterministic)
e Pairs (x, ), mx € A(X) (Markovian)

We focus on the non-deterministic case. The Markovian case is more involved, but has
analogous results.

An acyclic strategy on (X, .A) is a collection B C A containing no directed cycles.
The strategy complex &(X,.A) is the simplicial complex of all acyclic strategies.

A guaranteed strategy for reaching x € X is an acyclic strategy o € &(X, .A) such that every
y # x has at least one action in ¢ exiting y.

For x € X, denote &,(X,A) = &(X, Ay), where A, is obtained from A by removing all
actions based at x and adding all the deterministic actions {(x, y)}, for y # x.
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Strategy Spaces

Theorem

A transition system (X,.A) has a guaranteed strategy for reaching x if and only if G,(X,.A) is
homotopy equivalent to $X1=2. Otherwise, G,(X,.A) is contractible.

An important observation is that an acyclic strategy is witnessed by a decreasing function of its
supporting DAG. A guaranteed strategy for reaching x may be used to construct an open cover
of RIXI'\ Sp(l) whose nerve coincides with &, (X, A).

Question. What are appropriate category structures on transition systems (matched by a
view of strategy spaces) such that &, &, (and other variants) are functorial?

Question. What compositions (of transition systems) yield explicit computations of the
homotopy type of &.7

Question. Extensions of G, to the coveted category of hybrid open systems+compositional
“formulae” as above?

SUCH EXTENSIONS WOULD GIVE RISE TO A CONSTRUCTIVE APPROACH TO THE DESIGN
OF REACTIVELY CONTROLLABLE OPEN HYBRID SYSTEMS.
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Existing Categorical Frameworks

General mantra: “Hybrid System=Graph of Dynamical Systems”
> Ames [11]:

- general "hybridization” construction for any category;
- applies to smooth dynamical systems (no composition).

» Haghverdi-Tabuada—Pappas [12]:

- an open system version (both discrete and continuous control).
- weakened notion of equivalence: bisimulation.

» Lerman, Lerman-Schmidt [13,9]:

- open systems as hybrid submersions;
- interconnections via hybrid submersions between products.

» Culbertson—Gustafson—Koditschek—Stiller [4]:

- hybrid semiconjugacies to construct template-anchor pairs;
- Sequential composition using weakened notion of trajectory.
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Informal Tidbits: Compositions

Sequential composition may be thought of as a concatenation operator on the trajectories of a pair

CGKS [4]: discuss difficulties with sequential composition of piecewise smooth (hybrid) trajectories,
establishing the need for coarse notions of (1) hybrid trajectory and/or (2) hybrid time domains.

12/16



Informal Tidbits: Compositions

Parallel compositions.
» The simplest example is a decoupled Cartesian product of systems.

» In mobile agent networks, interconnection may be intermittent.

[While far apart, the two agent coalitions do not interact]

Ames [11] and Lerman—Schmidt [9]: enable interconnections, but need to be reconciled with HDI and
sequential compositions.
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Informal Tidbits: Refinement/Coarsening

Refinement: Splitting and recombining continuous modes is useful:

JZC D2 AN
N@ y#Zi
/

» Time as a hybrid system, trajectories as maps of time into a state space.

~~ A central principle in all approaches

» Need generalized trajectories to support ill-behaved time sudivisions
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Informal Tidbits: Refinement/Coarsening

Coarsening: When is “projection” of a HS to the underlying discontinuous structure more
informative?

A C

o/ LK 27/\*1\\1\E
F\W(Z ____________ YL

U

D _®

» Methods for bringing topology and hybrid structure into sync?

¥
(&) \

~~ This is precisely what happened to us in [14]! 1516



Informal Tidbits: Refinement/Coarsening

» Moving away from graphs as discrete models of hybrid structure? (a “Conley decomposition”?)

Fixed points are two-dimensional simplices?

» Probabilistic aspects of hybrid structure? (Entropy??)
(7R

A

Probability of arrival in B given A or given C?
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Informal Tidbits: It's About Time

» Generalized Hybrid Time Domains (HTD)?

A smooth “Cantor-themed” curve between two domains. . .
» Reformulate HTDs to facilitate trajectories of this form?
~~ MORE admissible solutions!
» Then we need to replace graphs-of-modes with covers-by-modes!

~~ An additional vote for replacing graphs with complexes?

14/16



THANK YoOu!
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