
Compositional Reactive Planning for Complex Tasks using
Topological Invariants of Strategy Spaces

Supported in part by AFOSR
FA9550-22-1-0429 and FA9550-19-1-0169

AFOSR Dynamical Systems and Control Theory Review

Dan P. Guralnik1

University of Florida

September 14, 2023

1e-mail: {danguralnik}@ufl.edu



Special Thanks

Dan Koditschek  for raising and suffering me as a father would, for 8 years;

Warren Dixon  for cheering and pushing me as a big brother would, for 4 years and counting;

Federico Zegers  for being a good friend (and teaching me network control);

Fred Leve  for making possible this program and intense learning experiences like this past week

Yuliy Baryshnikov  for introducing me to these special people and this community.

2 / 16



A Motivation Slide From 3 Years Ago
Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

For example, in networks where comms are constrained by distance,
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Switching between comms structures (e.g. spanning trees) is useful.
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Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
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Coordinated motion under a fixed conroller. . .
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. . . suggesting a reassessment of the comms structure. . .
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Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

. . . including temporary disconnects with the aim of reconnecting soon thereafter. . .
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In the presence of additional resources. . .
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A Motivation Slide From 3 Years Ago
Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

. . . a reactive control paradigm may provide alternative solutions. . .
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A Motivation Slide From 3 Years Ago
Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

[agents move according to original plans]
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[rendevous generates new comms connections]
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A Motivation Slide From 3 Years Ago
Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.
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A Motivation Slide From 3 Years Ago
Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

[resolution through edge-creation and edge-exchanges]
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A Motivation Slide From 3 Years Ago
Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

[continued motion as a group]
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A Motivation Slide From 3 Years Ago
Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

[they live happily ever after]
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A Motivation Slide From 3 Years Ago
Challenge: Autonomous generation of complex distributed cooperative behaviors requires reasoning
over very large combinatorial structures.

[they live happily ever after]

I “very large combinatorial structure”=the space of all spanning forests on a varying set of agents.
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Why Categories of HDIs?

Emerging requirements:

I Need a rich category-theoretic “substrate” for symbolic representations of task domains

• Do not treat tasks on a case-by-case basis

• Instead, consider them as capabilities

• Generate new capabilities through composition
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Why Categories of HDIs?

Biginnings of An Example Structure: Provided the data

• finite set of agent labels V,

• compact workspace with piecewise smooth boundary Ω ⊂ Rd ,

• spanning forest F ∈
(V

2

)
,

form the space X (V,F ) ⊂ ΩF of particle configurations (xv )v∈V in which any two F -neighbors
are R-close.

I Each X (V,F ) supports all distributed controllers requiring communications along F .

I Removing an interaction e ∈ F means applying a jump from X (V,F ) to X (V,F − e),
removing the access of the agents in ∂e to information about each other.

I Losing an agent v ∈ V means applying the restriction from X (V,F ) to X (V − v ,F − v),
losing the adjacent edges of F in the process.

I A point y ∈ X (V ′,F ′) for V ∩ V ′ = ∅ gives rise to a jump X (V,F )→ X (V ∪ V ′,F ∪ F ′).

I Expanding or shrinking Ω (e.g., adding/removing obstacles, digging tunnels) alters the
safety constraints on all agents.
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Why Categories of HDIs?

Example Capability C (V,F , `, x∗): For specified `(f ) ∈ f , f ranging over the components of
the forest F , execute a controller that brings each x`(f ) to a designated target xf

∗ ∈ Ω while
keeping the system state in X (V,F ), from almost all initial positions in Ω.

 components of F follow their designated leaders

I C (V,F , `, x∗) is a compositional extension of C ({∗},∅, ∗, x∗): if n:Ω× Ω→ Rd is a
continuously varying navigation field2 with target y , then C (V,F , `, x∗) is realized by the
closed-form distributed controller

up ,
∑

q∼F p
ξ(xq, xp)n(xq, xp), ξ(y , z) , r(‖y−z‖)‖y−z‖2

〈n(y ,z),y−z〉 (1)

if p is not a leader, and up , γn(xf
∗, xp) if p is the leader of component f of F , provided

γ is sufficiently small.  If one agent can navigate Ω, so can a tree of agents

2subject to some conditions
6 / 16



Why Categories of HDIs?

Instances of C (V,F , `, x∗).

I This capability did not exist in the literature prior to our work in [1, 2], even for holonomic
single integrator agents.

I The main point is that the composition operator requires no knowledge of Ω: the
computational burden is offloaded onto n and distributed between the agents.
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Proposed Program

We seek a category-theoretic framework combining:

I differential inclusions

I jump/reset relations (discontinuous/switched dynamics)

I sequential and parallel composition (concatenation/coupling)

I maps between [open] hybrid systems

I trajectories have to be maps

I graphs may be insufficient for open systems
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We seek a category-theoretic framework combining:

I differential inclusions

I jump/reset relations (discontinuous/switched dynamics)

I sequential and parallel composition (concatenation/coupling)

I maps between [open] hybrid systems

I trajectories have to be maps

I graphs may be insufficient for open systems

HDIs on manifolds may be the right collection of objects:

I Can easily define a “graph of HDIs”, to see that this collection is “self-hybridizing”.

I Especially in the open setting, a discrete action defines a non-deterministic quiver of edges
(more below).

I We aim to explore trisps (Gelfand-Manin triangulated spaces=generalized simplicial sets)
as an alternative discrete skeleton.

 Is there a forgetful functor to the discrete structure?
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Proposed Program

“No Abstract Nonsense”. The proposed framework must operationalize the following:

I refinement/coarsening arguments to identify behaviors/tasks

 e.g., Template–Anchor pairs [3, 4]

 Other hierarchical compositions [5, 6, 7]

I Stability and robustness arguments,

 The hybrid differential inclusions framework [8] is an example

I Computable invariants of task achievability

 Connect to computational Conley theory

 Homological invariants à-la Erdmann

I Analysis of temporal tameness properties (noZeno / goodZeno / badZeno & worse. . . )

 Generalized hybrid time domains / hybrid arcs

 Weaker topology on the space of hybrid arcs?
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Proposed Program

Directions of Study:

I Fuse the Hybrid Differential Inclusions (HDI) framework [8] with the categorical
formulations of Culbertson et. al. [4] and Lerman–Schmidt [9].

 toolkit for systematic reasoning about compositions of capabilities

I Explore the compatibility of the new framework with computational Conley framework.

 YET ANOTHER REASON to work with complexes/trisps instead of graphs

I Develop a functorial theory of strategy spaces over this category.

 Characterize tasks for which homotopy types of strategy spaces are still dichotomic

 For these tasks, develop a compositional complexity theory
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Strategy Spaces

Erdmann’s Strategy Spaces [10].

I finite state space X

I finite set A of actions:

• Pairs (x ,Ax), Ax ⊂ X (non-deterministic)
• Pairs (x , πx), πx ∈ ∆(X ) (Markovian)

We focus on the non-deterministic case. The Markovian case is more involved, but has
analogous results.

An acyclic strategy on (X ,A) is a collection B ⊂ A containing no directed cycles.

The strategy complex S(X ,A) is the simplicial complex of all acyclic strategies.

A guaranteed strategy for reaching x ∈ X is an acyclic strategy σ ∈ S(X ,A) such that every
y 6= x has at least one action in σ exiting y .

For x ∈ X , denote Sx(X ,A) , S(X ,Ax), where Ax is obtained from A by removing all
actions based at x and adding all the deterministic actions {(x , y)}, for y 6= x .
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Strategy Spaces

Theorem

A transition system (X ,A) has a guaranteed strategy for reaching x if and only if Sx(X ,A) is
homotopy equivalent to S|X |−2. Otherwise, Sx(X ,A) is contractible.

An important observation is that an acyclic strategy is witnessed by a decreasing function of its
supporting DAG. A guaranteed strategy for reaching x may be used to construct an open cover
of R|X | \ Sp(1) whose nerve coincides with Sx(X ,A).

Question. What are appropriate category structures on transition systems (matched by a
view of strategy spaces) such that S,Sx (and other variants) are functorial?

Question. What compositions (of transition systems) yield explicit computations of the
homotopy type of S∗?

Question. Extensions of S∗ to the coveted category of hybrid open systems+compositional
“formulae” as above?

Such extensions would give rise to a constructive approach to the design
of reactively controllable open hybrid systems.

10 / 16



Existing Categorical Frameworks
General mantra: “Hybrid System=Graph of Dynamical Systems”

I Ames [11]:

- general “hybridization” construction for any category;
- applies to smooth dynamical systems (no composition).

I Haghverdi–Tabuada–Pappas [12]:

- an open system version (both discrete and continuous control).
- weakened notion of equivalence: bisimulation.

I Lerman, Lerman–Schmidt [13, 9]:

- open systems as hybrid submersions;
- interconnections via hybrid submersions between products.

I Culbertson–Gustafson–Koditschek–Stiller [4]:

- hybrid semiconjugacies to construct template-anchor pairs;
- Sequential composition using weakened notion of trajectory.
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Informal Tidbits: Compositions
Sequential composition may be thought of as a concatenation operator on the trajectories of a pair
of systems:

CGKS [4]: discuss difficulties with sequential composition of piecewise smooth (hybrid) trajectories,
establishing the need for coarse notions of (1) hybrid trajectory and/or (2) hybrid time domains.
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Informal Tidbits: Compositions
Parallel compositions.

I The simplest example is a decoupled Cartesian product of systems.

I In mobile agent networks, interconnection may be intermittent.

[While far apart, the two agent coalitions do not interact]

Ames [11] and Lerman–Schmidt [9]: enable interconnections, but need to be reconciled with HDI and
sequential compositions.
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Informal Tidbits: Refinement/Coarsening
Refinement: Splitting and recombining continuous modes is useful:

I Time as a hybrid system, trajectories as maps of time into a state space.

 A central principle in all approaches

I Need generalized trajectories to support ill-behaved time sudivisions
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Informal Tidbits: Refinement/Coarsening
Coarsening: When is “projection” of a HS to the underlying discontinuous structure more
informative?

A B

A B C H

C

D E

F G

H

E

D

G

F

I Methods for bringing topology and hybrid structure into sync?

 This is precisely what happened to us in [14]!
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Informal Tidbits: Refinement/Coarsening

I Moving away from graphs as discrete models of hybrid structure? (a “Conley decomposition”?)

Fixed points are two-dimensional simplices?

I Probabilistic aspects of hybrid structure? (Entropy??)

A

B C

Probability of arrival in B given A or given C?
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Informal Tidbits: It’s About Time

I Generalized Hybrid Time Domains (HTD)?

A smooth “Cantor-themed” curve between two domains. . .

I Reformulate HTDs to facilitate trajectories of this form?

 MORE admissible solutions!

I Then we need to replace graphs-of-modes with covers-by-modes!

 An additional vote for replacing graphs with complexes?
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Thank You!

15 / 16



References

[1] D. Guralnik, P. Stiller, F. Zegers, and W. E. Dixon, “Distributed cooperative
navigation with communication graph maintenance using single-agent navigation
fields,” in Proc. Am. Control Conf., June 2022.

[2] D. Guralnik, P. Stiller, F. Zegers, and W. E. Dixon, “Plug-and-play cooperative
navigation: From single-agent navigation fields to graph-maintaining distributed
mas controllers,” TAC (submitted), Dec. 2022.

[3] R. J. Full and D. E. Koditschek, “Templates and anchors: neuromechanical
hypotheses of legged locomotion on land,” Journal of experimental biology,
vol. 202, no. 23, pp. 3325–3332, 1999.

[4] J. Culbertson, P. Gustafson, D. E. Koditschek, and P. F. Stiller, “Formal
composition of hybrid systems,” arXiv preprint arXiv:1911.01267, 2019.

[5] P. Reverdy and D. E. Koditschek, “A dynamical system for prioritizing and
coordinating motivations,” SIAM Journal on Applied Dynamical Systems, vol. 17,
no. 2, pp. 1683–1715, 2018.

[6] P. B. Reverdy, “A route to limit cycles via unfolding the pitchfork with feedback,”
in 2019 American Control Conference (ACC), pp. 3057–3062, IEEE, July 2019.

[7] P. B. Reverdy, “Two paths to finding the pitchfork bifurcation in motivation
dynamics,” in 2019 IEEE 58th Conference on Decision and Control (CDC),
pp. 8030–8035, IEEE, December 2019.

[8] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical systems,” IEEE
control systems magazine, vol. 29, no. 2, pp. 28–93, 2009.

[9] E. Lerman and J. Schmidt, “Networks of hybrid open systems,” Journal of
Geometry and Physics, vol. 149, p. 103582, 2020.

[10] M. Erdmann, “On the topology of discrete strategies,” The International Journal
of Robotics Research, vol. 29, no. 7, pp. 855–896, 2010.

[11] A. D. Ames, A categorical theory of hybrid systems. PhD thesis, EECS Berkeley,
2006.

[12] E. Haghverdi, P. Tabuada, and G. J. Pappas, “Bisimulation relations for
dynamical, control, and hybrid systems,” Theoretical Computer Science, vol. 342,
no. 2-3, pp. 229–261, 2005.

[13] E. Lerman, “Networks of open systems,” Journal of Geometry and Physics,
vol. 130, pp. 81–112, 2018.

[14] O. Arslan, D. P. Guralnik, and D. E. Koditschek, “Coordinated robot navigation
via hierarchical clustering,” IEEE Transactions on Robotics, vol. 32, no. 2,
pp. 352–371, 2016.

16 / 16

https://jeb.biologists.org/content/202/23/3325
https://jeb.biologists.org/content/202/23/3325
https://arxiv.org/abs/1911.01267
https://arxiv.org/abs/1911.01267
https://doi.org/10.1137/17M111972X
https://doi.org/10.1137/17M111972X
https://doi.org/10.23919/ACC.2019.8814843
https://doi.org/10.1109/CDC40024.2019.9029711
https://doi.org/10.1109/CDC40024.2019.9029711
https://doi.org/10.1109/MCS.2008.931718
https://doi.org/10.1016/j.geomphys.2019.103582
https://doi.org/10.1177%2F0278364909354133
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2006-165.pdf
https://doi.org/10.1016/j.tcs.2005.03.045
https://doi.org/10.1016/j.tcs.2005.03.045
https://doi.org/10.1016/j.geomphys.2018.03.020
https://doi.org/10.1109/TRO.2016.2524018
https://doi.org/10.1109/TRO.2016.2524018

	
	A Motivation Slide From 3 Years Ago
	Why Categories of HDIs?
	Why Categories of HDIs?
	Why Categories of HDIs?
	Why Categories of HDIs?
	Proposed Program
	Strategy Spaces
	Strategy Spaces
	Existing Categorical Frameworks
	Informal Tidbits: Compositions
	Informal Tidbits: Refinement/Coarsening
	Informal Tidbits: It's About Time
	Informal Tidbits: It's About Time
	References

