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Complex Dynamics and Environments

• Unpredictable environments

• Obstacle-rich and dynamic

• Nonlinear uncertain dynamics

•    Fast (re-)planning

• Safe planning

• Safe learning

• Guaranteed robustness

Challenges Solutions
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Challenges and the Tools
Complex Dynamics Uncertain Models Uncertain Environments

• Structured models

• Parametric uncertainties

• Deterministic representations

Control theoretic tools

• General models

• Unstructured uncertainties

• Stochastic representations

Data-driven ML tools

Bridging the divide

Safety & Robustness Empirical Performance
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Data-driven 
Control Pipeline



Data-driven Control Design

System Data

Regression

Distribution

Dependent

Pipeline!

Control Design



• Training data distribution: True dynamics & data logging policy

• Training data has an associated distribution

Data Distribution Dependence

Data System Data Logging Policy

Human or Compute heavy (MPC)

Imitation Learning



The Role of Training Distribution

System Data

RegressionControl Design



The Role of Training Distribution
System

Data

Regression

Control Design

Distribution Shift!

Epistemic & 

Aleatoric



Robustness & Distribution Shifts
Epistemic & 

Aleatoric

• We want to be robust to epistemic and aleatoric 

uncertainties such that 

• We can quantify the distribution shift

• True distribution always lies within a known ball

• We can mitigate the distribution shift

• We can control the size of the guaranteed 

set

Agnostic to 



Why certificates                    in the space of distributions?

• Upstream nominal controllers designed with certificates of distributional rob.

• Available data with associated distribution

• Availability of data with true distribution is difficult to justify

• Expensive and unsafe

• Only training data is available: from past operation, sim etc.

• Instead, if we can produce certificates of distributional robustness

• Robust nominal control → Distributionally robust control, learning, and 

optimization

Robustness Certificates



• Safe use of machine learning

• Safe predictive control

• Natural ability to consider epistemic and aleatoric uncertainties

• Systems and our understanding of them are stochastic

• Design principles guided by distributional guarantees independently 

verified by e.g. Monte-Carlo methods

• Design space = Test space

• Easier feedback between the spaces

Distributional Robustness
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DR Control
• Distributionally robust control 

• Samples from the true distribution, only finite samples required [1,2]

• Known distribution (measure), state constraint satisfaction [3]

• (Un)stable deterministic systems → robustness to stochastic disturbances

• Stochastic disturbances enter unstable deterministic systems through uniformly 

bounded input operators, incremental stability extended to stochastic systems  

[4,5]

• Stable systems with uniformly bounded input operators for stochastic 

disturbances, control of higher moments [6], robustness in the sense of the 

Wasserstein metric [7]

 

[1 ] Yang, Insoon. "Wasserstein distributionally robust stochastic control: A data-driven approach." IEEE Transactions on 

Automatic Control 66.8 (2020): 3863-3870.

[2] Hakobyan, Astghik, and Insoon Yang. "Distributionally Robust Differential Dynamic Programming with Wasserstein 

Distance." IEEE Control Systems Letters (2023).

[3] Van Parys, Bart PG, et al. "Distributionally robust control of constrained stochastic systems." IEEE Transactions on 

Automatic Control 61.2 (2015): 430-442.

[4 ] Tsukamoto, Hiroyasu, and Soon-Jo Chung. "Robust controller design for stochastic nonlinear systems via convex 

optimization." IEEE Transactions on Automatic Control 66.10 (2020): 4731-4746.

[5] Pham, Quang-Cuong, Nicolas Tabareau, and Jean-Jacques Slotine. "A contraction theory approach to stochastic incremental 

stability." IEEE Transactions on Automatic Control 54.4 (2009): 816-820.

[6] Mazumdar, Eric, et al. "High confidence sets for trajectories of stochastic time-varying nonlinear systems." 2020 59th IEEE 

Conference on Decision and Control (CDC). IEEE, 2020.

[7] Bouvrie, Jake, and Jean-Jacques Slotine. "Wasserstein contraction of stochastic nonlinear systems." arXiv preprint 

arXiv:1902.08567 (2019).
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Distributionally Robust
Adaptive Control
(DRAC)



DRAC

Real System

Control augmentation 𝑢𝑎 to guarantee certificates of distributional robustness

Distributionally Robust 

& 

Predictable

Distribution Shift

ℒ1Adaptive 

Control



𝓛𝟏 Adaptive Control Architecture

System

Adaptation 

Law

State 

Predictor

Low-Pass 

Filter

Adaptation Loop

Performance

Low-Pass Filter

Robustness

• Guaranteed uniform performance bounds 

and robustness margins

• Validated for manned and unmanned aerial 

vehicles, oil drilling operations,

hydraulic pumps, etc.

• Commercialized by various industries, 

including Raymarine, Caterpillar, JOUAV 

Automation Tech, etc.



𝓛𝟏 Adaptive Control: Timeline

‘06 ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 ‘20

First papers 

appeared at ACC

UAV path following 

with ℒ1 at AIAA GNC

NASA issued grants for 

testing ℒ1 on AirSTAR

Raymarine Evolution 

autopilots with ℒ1

Tests on Learjet and F16 at 

the Edwards AFB

Safe Learning 

and ControlJoint papers on highly 

unstable aircraft 

configurations

‘21 ‘22

Distributionally 

Robust Control

AFOSR support 2003-2023



𝓛𝟏 Adaptive Control: Guarantees

ℒ1 adaptive control provides certificates of performance and robustness 

Transient performance Steady-state performance Disturbance rejectionTime-delay margin

And yet, as the world around it changes, new forms of guarantees are needed.

Data-driven systems,

Stochastic representations

Distributional 

Guarantees



The Systems
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Nonlinear Itô Processes
True

System

• 𝑊𝑡: Brownian motion

• Gaussian Markov Process 

• Stationary independent increments: Lévy process

• Continuous and nowhere differentiable, almost surely

• Motivation: Every almost surely continuous process with independent 

increments is Gaussian [1]

[1] Skorokhod, A. "Random Processes with Independent Increments, Nauka, Moscow, 1964." (1991



Nonlinear Itô Processes
True

System

Uncertain drift

• Known drift component

• Matched and unmatched uncertainties

• Locally Lipschitz, linear growth



• Known diffusion component: uniformly bounded

• Drift uncertainty

• sublinear growth, Holder continuous 𝛼 ≤
1

2

• Robust approaches fail due to the growth

• Control channel noise parameter

• Stronger results if                             (Sobolev space)   

• ∃ locally essentially bounded weak derivatives up to order 2 [1]

Uncertain diffusion 

Nonlinear Itô Processes
True

System

[1] Krylov, Nikolaj Vladimirovič. Controlled diffusion processes. Vol. 14. Springer Science & Business Media, 2008.



Systems
True

System

Nominal

System

Nominal system: No epistemic uncertainties, only aleatoric

Independent 

Brownian motions

True System 

Measure 

(Distribution)

Nominal System 

Measure 

(Distribution)

Distribution Shift



The Goals
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Goals
Nominal

System

Learned via

Nominal 

Distribution

True

System

• Learned controller on true system: Distribution shift

• Guarantees of safety and predictability: Invalid

Distribution Shift



Goals
Nominal

System

True

System

• We want to design a feedback augmentation such that

• True distribution      remains uniformly bounded around the nominal 

distribution

• Robustness bounds used upstream for DR planning and control

• Bound in the sense of Wasserstein metric

• Optimal transport theory

• A metric on the space of distributions (distance and shape) 

Bounded

Any Distribution



Ambiguity tube of distributions

Set of path measures

(Kolmogorov extension)

Distributions on

Sample trajectories 

via Girsanov 

The Goals: Pictorial Depiction

• For each 𝑡 ≥ 0

Wasserstein

Distance

Ambiguity

Set

Nominal

Solution

True

Solution
26

Agnostic to ℚ𝑡
∗



Nominal Stability Assumptions
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Nominal

System

Nominal Deterministic

Sub-system

≡ 0

The nominal deterministic subsystem with the nominal controller

• Incrementally exponentially stable (IES) 

Furthermore, ∃ positive scalars     ,      , and    , and function 

Incremental Lyapunov function 

(ILF)

Certificate for IES [1]

[1] Angeli, David. "A Lyapunov approach to incremental stability properties." IEEE Transactions on Automatic Control 47.3 (2002): 410-421



Controller

The controller has the architecture of an ℒ1 

adaptive controller

The controller has three main components 
System

Adaptation Law

State Predictor

IES Controller

Low-Pass 
Filter

State Predictor

Adaptation Law

Low-Pass Filter

28

Nominal

System

True

System



Controller

State Predictor Adaptation Laws Control Law
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True System

• Components:

• Known deterministic subsystem

• Cannot estimate diffusion due to independent Brownian motion→fundamental 

limitation

• Deterministic dynamics, stochastic state

• State-feedback injection

• Predictor driven by a state induced by its dynamics and Brownian motion

• Colored noise

• Adaptive estimates



Controller

State Predictor Adaptation Laws Control Law
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True System

• Piecewise constant adaptive law

• 𝑇𝑠: Sampling period

• Quality of adaptive estimates ∝
1

𝑇𝑠

Can run at a rate up to the digital hardware limit

• Entities ҧ𝑔, Φ−1, 𝜇 are (partially) computed before runtime

• Minimal computation to produce adaptive estimates

• Numerically stable implementation → avoids stiffness



Controller

State Predictor Adaptation Laws Control Law
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True System

• Feedback operator

• Linear bounded operator

• First order low-pass filter with bandwidth 𝜔

•           : adaptive estimate of the matched uncertainty 



Main Result

Theorem: Suppose for any 𝑝, the initial nominal and true measures ℚ0
∗  and ℚ0 satisfy 

Given any ϵ and 𝜌𝑎, define

 where, α𝑖 are the bounds on the ILF 𝑉(. , . ), 𝐶𝑖, 𝑖 ∈ 1, … , 3 , are constants dependent on the 

unmatched uncertainty 𝑙(𝑥), diffusion terms 𝑝(𝑥) and 𝑞(𝑥), and the control noise parameter 𝜗, 

respectively. Moreover,  ζ𝑖(ω),𝑖 ∈ 1,2 , and ζ3(ω)  are functions of the filter bandwidth ω, and the 

adaptive law’s sampling period 𝑇𝑠, respectively. 

Then, there exists a filter-bandwidth ω0 and adaptation-rate Γ0 such that for ω ≥ ω0 and Γ ≥ Γ0, 

where ζ𝑖 ω ∝
1

ω
, 𝑖 ∈ 1,2 , ζ3 ω ∝ 𝑇𝑠, and 𝐷 is a constant.

UB

UUB
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Main Result

ρ𝑟

ρ𝑎

ℚ𝑡
∗

ℚ𝑡
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Main Result

ρ𝑟

ρ𝑎

ℚ𝑡
∗

ℚ𝑡
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• Using the transient bounds of ℒ1 adaptive controller

• Bound on the 𝑝𝑡ℎ-Wasserstein due to Burkholder-Davis-Gundy inequality [1]

• Bound on supremum of martingales via their quadratic variation

• Term 𝐶1 due to unmatched uncertainty

• Term 𝐶2 due to independence of Brownian motions [2]

• Lower bounded by a strictly positive 𝐶 > 0
• Not present in deterministic systems

[1] Ren, Yao-Feng. "On the Burkholder–Davis–Gundy inequalities for continuous martingales." Statistics & probability letters 78.17 (2008): 3034-3039

[2] Pham, Quang-Cuong, Nicolas Tabareau, and Jean-Jacques Slotine. "A contraction theory approach to stochastic incremental stability." IEEE Transactions on Automatic Control 54.4 (2009): 816-820.



Main Result

ρ𝑟

ρ𝑎

ℚ𝑡
∗

ℚ𝑡
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• Term 𝐶3 due to noisy control channel

• Can obtain stronger results when                             (Generalized Ito Lemma)

• Feedback operator is Frechet Differentiable

• Ito lemma for weakly differentiable functions [1] 

[1] Krylov, Nikolaj Vladimirovič. Controlled diffusion processes. Vol. 14. Springer Science & Business Media, 2008.



Main Result

ρ𝑟

ρ𝑎

ℚ𝑡
∗

ℚ𝑡
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[1] Lakshmanan, Arun, Aditya Gahlawat, and Naira Hovakimyan. "Safe feedback motion planning: A contraction theory and ℒ 1-adaptive control based approach." 2020 59th IEEE Conference on Decision 

and Control (CDC). IEEE, 2020.

In the case when 𝑊𝑡
∗ and 𝑊𝑡 ≡ 0 (deterministic)

• Wasserstein → Euclidean norm

• We recover 𝓛𝟏 guarantees for nonlinear deterministic systems [1]



Numerical Experimentation
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Angular rate dynamics of a quadrotor

Drift and diffusion uncertainties

Divergence of nominal and true 

distributions



Numerical Experimentation
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DRAC control

Boundedness and Convergence of distributions in the Wasserstein metric 

Independent Brownian motions → Convergence up to a nonzero limit 



Numerical Experimentation
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DRAC control

Boundedness and Convergence of distributions in the Wasserstein metric 

Independent Brownian motions → Convergence up to a nonzero limit 



Continuation
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• Extension to general Lévy processes

• Non-Gaussian

• Continuous in probability

• Further experimentation of DRAC

• Learned systems subject to distribution shifts

• V&V of controlled systems with learned components in the loop

• Distributional certificates

• Deep learned dynamics and controllers

• Learned sensing (perception)

• Propagation of robust data-driven certificates through the complete control 

pipeline

• Distributional robustness as a language for sensing, planning, and control to 

communicate

• Distributionally robust planning and control



Ongoing Projects
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• Social Information Dynamics and Control (AFOSR)

• NASA ULI on Robust Resilient Autonomy (AVIATE Center, UIUC)

• Two NSF projects on safe learning and robotics, one pending

• Industry developments at Lockheed Martin with Air Force Academy vehicles

• Potential opportunities at AFRL with Boeing (Archer)

• Acknowledgments:

• Sitao Zhang (MS student) and Sambhu Karamanas (Ph.D. student)

• Evangelos Theodorou (GaTech; introduction to AlphaPilot drone racing environment)

• Chris Elliott (Lockheed Martin)

• Irene Gregory (NASA LaRC)
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