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A human-machine symbiotic system for the extraction of 
high-level behaviors from a macroscopic view of swarms 

Panagiotis Artemiadis, University of Delaware/Arizona State University

Objective: 
• Identify underlying brain perception mechanisms of high-level 

latent multi-agent behaviors 
• Define computational principles and methods for human-aided 

macroscopic analysis of swarms
• Develop and test human-machine symbiotic system for 

comprehensive situation awareness
Approach: 
• Record and analyze evoked ElectroEncephaloGraphic (EEG) 

signals where human operators observe latent swarming 
behaviors

• Combine image segmentation and feature extraction methods 
with EEG-based extraction of behaviors and models

• Develop mixed situation awareness between humans and 
machine for deconstructing and predicting behaviors 

DoD Benefits:
• Form a symbiosis between human and machine systems for 

comprehensive situation awareness, collaborative assum-
ptions about adversarial agents, and shared decision making

Progress:
• Identified brain patterns related to visual perception of collective 

and swarming behaviors
• Developed new methods for EEG feature extraction, fusion and 

classification in motor and speech imagery
• Developed methods for simulating stochastic leader-follower 

swarming behaviors and reconstructing latent controller for 
enhancing human perception

Simulated leader-follower behaviors



List of Project Goals

1. Correlate brain activation patterns and gaze tracking to 
collective high-level behaviors

2. Extract areas of interest and perform human-aided 
analysis of behaviors using machine intelligence

3. Fit models and control programs to agent groups

4. Present extracted models to the human, predict future 
behaviors and close the loop 
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Progress Towards Goals (or New Goals)
1. Correlate brain activation patterns and gaze tracking to collective high-level behaviors

A. Swarm cohesion as a variable explained in EEG

B. Improving EEG classification using new features

C. Explaining mutual adaptation in human-machine EEG-based interfaces

2. Extract areas of interest and perform human-aided analysis of behaviors using machine 
intelligence

A. Automatic identification of swarm leader from macroscopic behaviors

3. Fit models and control programs to agent groups

A. Automatic extraction of control strategies

4. Present extracted models to the human, predict future behaviors and close the loop 
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Outline
HORC

• Related Work - Inspiration for the project

• EEG feature descriptors and discriminant analysis under 
Riemannian Manifold perspective 

• Metrics for mutual adaptation between humans and machines

• Automatic identification of swarm leader from macroscopic 
behaviors



Related Work
HORC

[1] Ryan Lukeman, Yue-Xian Li, and Leah Edelstein-Keshet. Inferring individual rules from collective behavior. Proceedings of the National 
Academy of Sciences, 107(28):12576–12580, 2010. 
[2] Yael Katz, Kolbjørn Tunstrøm, Christos C Ioannou, Cristián Huepe, and Iain D Couzin. Inferring the structure and dynamics of interactions in 
schooling fish. Proceedings of the National Academy of Sciences, 108(46):18720–18725, 2011. 
[3] Benjamin T Fine and Dylan A Shell. Unifying microscopic flocking motion models for virtual, robotic, and biological flock members. 
Autonomous Robots, pages 1–25, 2013. 

• Analysis of individual roles and 
rules to explain swarming in 
biological swarms [1], [2]

• Extraction of flocking models by 
explaining behaviors of each 
agent and its neighbors [3]

Agents detection and velocities calculation [1]

Flocking motion model extraction [3]



HORC
Object and behavior recognition - A brain skill (?)

[4] Pradeep Shenoy and Desney S Tan. Human-aided computing: utilizing implicit human processing to classify images. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems, pages 845–854. ACM, 2008. 
[5] Changming Wang, Shi Xiong, Xiaoping Hu, Li Yao, and Jiacai Zhang. Combining features from erp components in single-trial eeg for 
discriminating four-category visual objects. Journal of neural engineering, 9(5):056013, 2012. 
[6] Jun Wang, Eric Pohlmeyer, Barbara Hanna, Yu-Gang Jiang, Paul Sajda, and Shih-Fu Chang.  Brain state decoding for rapid image retrieval. In 
Proceedings of the 17th ACM international  conference on Multimedia, pages 945–954. ACM, 2009. 
[7] Concetto Spampinato, Simone Palazzo, Isaak Kavasidis, Daniela Giordano, Mubarak Shah, and Nasim Souly. Deep learning human mind for 
automated visual classification. arXiv preprint  arXiv:1609.00344, 2016. 

EEG-based Image classification [4]

• Static image categorization using brain-aided 
approaches has promising results [4]

• ERPs can be used for static image classification [5]

• A single trial EEG-based brain machine interface 
(BCI) is used to detect objects of interest of arbitrary 
classes from an initial subset of images. [6] 

• Deep learning to develop a visual object classifier 
where the feature descriptors are extracted from 
EEG signals rather than from the conventional raw 
pixel level. [7]

ERP differences across 4-category objects [5]

Related Work



HORC
From static images to swarming behaviors

Igor A Shevelev, Viktorina M Kamenkovich, Nina B Kostelianetz, and George A Sharaev. Recognition of direction of uniform and accelerated 
visual motion and eeg alpha wave phases. FEBS letters, 392(2):169–174, 1996. 
Matthew B Wall, Angelika Lingnau, Hiroshi Ashida, and Andrew T Smith. Selective visual responses to expansion and rotation in the human mt
complex revealed by functional magnetic resonance imaging adaptation. European Journal of Neuroscience, 27(10):2747–2757, 2008. 
Matthias M Müller, Markus Junghöfer, Thomas Elbert, and Brigitte Rochstroh. Visually induced gamma-band responses to coherent and 
incoherent motion: a replication study. NeuroReport, 8(11):2575–2579, 1997. 

• EEG alpha waves are correlated to direction of 
uniform and accelerated visual motion in [8] 

• Examining the brain via functional Magnetic 
Resonance Imagining (fMRI) demonstrated that 
optical flow of a pattern of moving dots, such as 
expansion and rotation, elicits selective 
responses in the visual areas of the brain [9] 

• In [10], Muller et al. found that the EEG gamma 
power band is modulated differently in coherent 
versus incoherent motion. 

Related Work



HORC
Results

Brain representation of swarm cohesion

1st row: low cohesion
2nd row: low -> high cohesion
3rd row: low-> medium cohesion

George Karavas, Daniel T. Larsson and Panagiotis Artemiadis, “A hybrid brain-machine interface for control of robotic swarms: 
Preliminary results”, in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5065 – 5075, 2017



Outline
HORC

• Related Work - Inspiration for the project

• EEG feature descriptors and discriminant analysis under 
Riemannian Manifold perspective 

• Metrics for mutual adaptation between humans and machines

• Automatic identification of swarm leader from macroscopic 
behaviors



HORC
EEG feature descriptors and discriminant 

analysis under Riemannian Manifold perspective 

• The energy of EEG signals is simultaneously distributed in 3 domains: Time–
Space–Frequency.

• Classical approaches in one way or another extract the feature descriptor into a 
vector in Euclidean space, therefore fail to notice a very distinctive characteristic of 
data: their structure -- the manifolds and the interrelation across the tensor 
dimensions. 

Chuong H Nguyen and Panagiotis Artemiadis, “EEG Feature Descriptors and Discriminant Analysis 
under Riemannian Manifold perspective,” Neurocomputing, 275, pp. 1871-1883, 2018.

Problem Definition and Research Gap



HORC
EEG feature descriptors and discriminant 

analysis under Riemannian Manifold perspective 

Chuong H Nguyen and Panagiotis Artemiadis, “EEG Feature Descriptors and Discriminant Analysis 
under Riemannian Manifold perspective,” Neurocomputing, 275, pp. 1871-1883, 2018.

Features in Reimannian Manifold

• Tangent space distance
• Log-Euclidean distance
• Kullback-Leibler (KL) divergence
• Stein divergence
• Von Neumann divergence



HORC
EEG feature descriptors and discriminant 

analysis under Riemannian Manifold perspective 

[11] G.P.C. Brunner, R. Leeb, G.R. Muller-Putz, A. Schlogl, BCI Competition 2008 Graz Data Set A, Technical Report, Institute for Knowledge Discovery, and 
Institute for Human–Computer Interfaces Graz University of Technology, Austria, 2008, doi:10.1109/TBME.2004.827081. 

• The approach was evaluated by using the datasets IIa from the 
BCI competition IV [11]. The datasets consist EEG signals from 
nine subjects, each was asked to perform four different motor 
imagery tasks: Left hand, right hand, tongue and foot.
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HORC

Chuong H. Nguyen, George K. Karavas and Panagiotis Artemiadis, "Adaptive multi-degree of freedom Brain Computer Interface 
using online feedback: towards novel methods and metrics of mutual adaptation between humans and machines for BCI," PloS
one 14.3, e0212620, 2019.

Metrics for mutual adaptation between 
humans and machines

• Use EEG signals and combine motor with speech imagery to allow for tasks that 
involve multiple degrees of freedom (DoF). 

• Utilizes the covariance matrix descriptor as feature, and the Relevance Vector 
Machines (RVM) classifier. 

• The novel contributions include:
(1) a new method to select representative data to update the RVM model, and 
(2) an online classifier which is an adaptively-weighted mixture of RVM models 

to account for the users’ exploration and exploitation processes during the learning 
phase. 

(3) Instead of evaluating the subjects’ performance solely based on the 
conventional metric of accuracy, we analyze their skill’s improvement based on 3 other 
criteria, namely the confusion matrix’s quality, the separability of the data, and 
their instability. 



HORC

Chuong H. Nguyen, George K. Karavas and Panagiotis Artemiadis, "Adaptive multi-degree of freedom Brain Computer Interface 
using online feedback: towards novel methods and metrics of mutual adaptation between humans and machines for BCI," PloS
one 14.3, e0212620, 2019.

Metrics for mutual adaptation between 
humans and machines

Figs (a) and (b) control the swarm density and the shape of the formation, 
respectively. Figs (c) and (d) assign the task of imagining saying the words 
“concentrate” (class 2) and “split” (class 4) to concentrate and split the swarm, 
respectively. Fig (e,f,g,h) show the system’s feedback to the corresponding 
imagery of the users.



HORC

Chuong H. Nguyen, George K. Karavas and Panagiotis Artemiadis, "Adaptive multi-degree of freedom Brain Computer Interface 
using online feedback: towards novel methods and metrics of mutual adaptation between humans and machines for BCI," PloS
one 14.3, e0212620, 2019.

Metrics for mutual adaptation between 
humans and machines



HORC

Chuong H. Nguyen, George K. Karavas and Panagiotis Artemiadis, "Adaptive multi-degree of freedom Brain Computer Interface 
using online feedback: towards novel methods and metrics of mutual adaptation between humans and machines for BCI," PloS
one 14.3, e0212620, 2019.

Metrics for mutual adaptation between 
humans and machines

• Reducing instability from run 1 to run 
4 or even run 5, which indicates that the 
users became more familiar to the 
systems and tried to apply what they 
had learned, e.g. exploitation. 

• In run 6, we observe the increase of 
instability

Data instability for each class along the runs.
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HORC
Controller reconstruction and leader 

identification

• Given macroscopic behavior of a multi-agent system with a single leader, 
devise method for tracking and identifying leader in real-time

• Identify leader-followers controllers and simulate/predict future behavior

Problem Statement



HORC
Controller reconstruction and leader 

identification

• Leader-based control of swarm behavior: Explicit leadership vs Tacit 
leadership [1]

• In explicit leadership via flooding, every agent matches the speed and direction of 
the leader

• In tacit leadership via consensus, every agent matches the average speed and 
direction of neighbors within sensor range

• Performance of flooding and consensus [2] : 
• Flooding method is observed to be more effective in moving the swarm between 

goal points.
• However, consensus method showed advantages in improving overall connectivity 

and cohesion of the swarm.

Motivation

[1] Amraii, Saman Amirpour, Phillip Walker, Michael Lewis, Nilanjan Chakraborty, and Katia Sycara. "Explicit 
vs. tacit leadership in influencing the behavior of swarms." In 2014 IEEE International Conference on 
Robotics and Automation (ICRA), pp. 2209-2214. IEEE, 2014.
[2] P. Walker, S. A. Amraii, M. Lewis, N. Chakraborty, and K. Sycara, “Human control of leader-based 
swarms,” in Proc. IEEE Int. Conf. Syst. Man, Cybern., 2013, pp. 2712–2717.



HORC
Controller reconstruction and leader 

identification

• Assume general enough behaviors, as explained in Craig Reynolds model [3]

Methods

[3] Reynolds, Craig W. "Flocks, herds and schools: A distributed behavioral model." In Proceedings of the 
14th annual conference on Computer graphics and interactive techniques, pp. 25-34. 1987.

• Separation : Each agent experiences 
separation force from other agents in its 
neighborhood

• Alignment : Each agent tries to move in the 
average velocity direction of other agents in 
its neighborhood

• Cohesion : Each agent tries to move to the 
average position of other agents in its 
neighborhood

𝐹⃗𝐹𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐹⃗𝐹𝑖𝑖_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐹⃗𝐹𝑖𝑖_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐹⃗𝐹𝑖𝑖



HORC
Controller reconstruction and leader 

identification

• Assume general enough behaviors, as explained in Craig Reynolds model [3]

Methods

Separation behavior 
with 20 agents

Alignment behavior 
with 20 agents

Cohesion behavior 
with 20 agents

Combined



HORC
Controller reconstruction and leader 

identification

• Create simulation with the following assumptions

Approach

• Leader is given a fixed trajectory

• Other members do not exert force on the leader

• Leader has a bigger neighborhood radius than other members

• Agents communicate with each other and follow rules of flocking 

algorithm

• Given the simulated position of all agents, create an optimization problem 
to identify the leader



HORC
Controller reconstruction and leader 

identification

Example cases



HORC
Controller reconstruction and leader 

identification

Approach

Let 𝐷𝐷𝑖𝑖𝑡𝑡 be the position of agent i recorded from the simulation at time frame t 
and 𝑑𝑑𝑖𝑖𝑡𝑡(𝐿𝐿) be the predicted position with L being the parameter to be optimized
L: the weight factor of the leader to agents force

We define the total cost over T-1 steps for N agents as 

Assuming each one of the agents to be the leader, find the agent for which the 
leader weight factor L minimizes the above cost



HORC
Controller reconstruction and leader 

identification

Early results

Agent 1 is the leader

Using first 150 time samples

Using first 300 time samples

Simulation

Minimum cost -
Prediction



HORC
A human-machine symbiotic system for the extraction of 
high-level behaviors from a macroscopic view of swarms

EEG-based static 
images categorization 

Brain-responses 
to flocking

Machine intelligence 
for macroscopic
analysis

Robust EEG 
correlations to 
behaviors



List of Publications, Awards, Honors, etc.
Attributed to the Grant

• Daniel Larsson, Chuong Nguyen, Panagiotis Artemiadis, “Modeling and Control of Mid-flight 
Coupling of Quadrotors: A new concept for Quadrotor cooperation,” In the Proc. of the IEEE 
International Conference on Unmanned Aircraft Systems (ICUAS), September 2020, Athens, 
Greece, 2020.

• Panagiotis Artemiadis, Chuong H. Nguyen, George K. Karavas, ``Brain-computer interface 
methods for imagined speech using Reimannian manifold feature classification,'' in N. G. 
Hatsopoulos, J. S. Pezaris (editors) Proceedings of AREADNE 2020, Santorini, Greece, 16-
20 June 2020, published by The AREADNE Foundation, Inc., Cambridge, Massachusetts, 
USA, 2020.

• Chuong H. Nguyen, George K. Karavas and Panagiotis Artemiadis, "Adaptive multi-degree of 
freedom Brain Computer Interface using online feedback: towards novel methods and metrics 
of mutual adaptation between humans and machines for BCI," PloS one 14.3, e0212620, 
2019.

• Chuong H Nguyen and Panagiotis Artemiadis, “EEG Feature Descriptors and Discriminant 
Analysis under Riemannian Manifold perspective,” Neurocomputing, 275, pp. 1871-1883, 
2018.

• Chuong H Nguyen, George K Karavas and Panagiotis Artemiadis, “Inferring imagined speech 
using EEG signals: a new approach using Riemannian manifold features,” Journal of Neural 
Engineering, 15.1, 016002, 2018.

• Panagiotis Artemiadis and Georgios Konstantinos Karavas, "Systems and methods for hybrid 
brain interface for robotic swarms using EEG signals and joystick inputs", U.S. Patent No. 
10,712,820. 14 July. 2020.

• Panagiotis Artemiadis and Daniel Larsson, “Systems and methods for dynamics, modeling, 
simulation and control of mid-flight coupling of quadrotors”, U.S. Patent No. 10,642,285. 5 
May. 2020.

2 peer-reviewed conf. papers, 3 journal papers, 2 issued patents
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