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Applications of quantum probability theory to human-machine

communication networks
Busemeyer, IU; Wang, OSU, Balakrishnan, MUST

Objective:
« Develop and test quantum probability
theory for human communication networks.

* Apply and test theories with dynamic
information flows in larger networks.

Approach:

 Mathematical development

« Computational modeling and empirical
testing

DoD Benefits:

* Predict human-machine team performance
interactions in networks

« optimize, and control networks for field
tasks with limited time and resource

Progress: (Only 6 months into new grant)

« Developed quantum dynamic models for
searching and communicating in networks

« Compared search and communication rates
in quantum and Markov networks
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Quantum walks systematically detect communication at correct
target faster than Markov walks



List of New Project Goals

The first goal is aimed to investigate small human network
communications (like chains of command). We plan to develop and test
quantum probability theory for human communication networks by
generalizing our previous theoretical developments for dynamic and
strategic decisions to human communication through networks.

Experimentally test the new theory with human data using human teams
communicating sequentially through networks to make decisions.

Compare the predictive accuracies of the new theories to traditional
theories.

Apply and test theories with dynamic information flows in larger networks.
Theories from the first objective will be applied to larger networks and
used to investigate dynamic network flows with interacting human and
artificial agents.

Ultimate goal is to predict, optimize, and control human-machine team
networks for field tasks with limited time and resource



Progress Towards New Goals

(only 6 months into new grant)

At this early stage we have mainly worked on theory and
computation

1. Developed applications of quantum-Markov open
systems for describing dynamics of evidence
accumulation

2. Compared speed of “opinion consensus” for quantum
versus Markov communication networks on one
dimensional linear type lattices with asymmetric
transition rates

3. Started developing theory for building quantum networks
with asymmetric transition rates for networks on small
but arbitrary graphs



Recent Additions to Previous Grant
Applications of Quantum Theory to Strategic Decision Making

1. Wang, Busemeyer & deBuys submitted a new manuscript to a special issue
on “Extending Rationality” to appear in Topics in Cognitive Science titled
“Beliefs, actions, and rationality in strategical decisions.”

This reports our work applying quantum models to account for interference
effects of predictions on actions in social-economic type games.

2. Zhang, Balakrishnan & Busemeyer are preparing a new manuscript to
submit to IEEE Transactions on man, systems, cybernetics titled “Strategic
Driver-Assist Systems to Mitigate Inattention in Drivers with Open-Quantum
Cognition Models”

We developed a computational model for a drive-assist car problem within a
game-theoretic setting. An artificial car-agent assesses the road condition,
and the human driver seeks to drive safely using the car-agent’s advice.
We model the decisions of the human to follow or not the car-agent’s advice
using a quantum open system. At the same time, the car-agent learns the
parameters of the human’s decision system to optimize advice to the
human. Numerical results are presented to illustrate results of both
simultaneous and subgame perfect equilibria. 5



1. New Research on Quantum-Markov Open System Dynamics

Kvam, P. D., Busemeyer, J. R., & Pleskac, T. J. (2020, submitted) Temporal oscillations in preference
strength: Evidence for an open system model of constructed preference. Under review at Scientific Reports
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Quantum-Markov Open System Model

Busemeyer, J. R., Zhang, Q., Balakrishnan, S. N., Wang, Z. (2020) Application of Quantum—Markov Open
System Models to Human Cognition and Decision. Entropy, 22, 990; €22090990
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2. New research comparing classical versus quantum walks in
social communication networks

» Several articles have established quadratic and sometimes
exponential speed up in network search using quantum walks
compared to Markov walks.

 These models could also be used to understand opinion or
consensus reaching produced by communication in social networks

* Previous work comparing quantum and Markov models has been
limited to symmetric/undirected walks

 We have started comparing quantum and Markov walks using
asymmetric/directed walks on a line

» Our work uses the continuous time quantum walk. The direction of
evolution is produced by the choice of potential function on the
diagonal of the Hamiltonian



Markov Random Walk
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avaerage hitting time

Mean Detection Time as a function of probability of

detecting correct alternative for Markov and quantum models
(computations done by Adam Huang, UG, Carleton University)

N = 101 states.
Varying parameters of each model across a wide range of values.
Each point represents one combination of model parameters.
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Quantum Walks on Small graphical networks

Past work with quantum models on graphs assumed symmetric/undirected walk

(e.g., Childs, AM, Farhi, E & Gutmann, S (2002) An Example of the Difference Between Quantum and Classical Random
Walks. Quantum Information Processing, Vol. 1, Nos. 1/2)

given by the quantum Hamiltoman with matrix elements**’

(a|H|b) = My,
in out
— — [ —y  a# b, a and b connected by an edge
Mg =43 0 a#b,aand bnot connected

ky a= b,k is the valence of vertex a

We are developing quantum walks on graphs with
asymmetric rates of transitions using control U gates
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Suppose Al, A2, A3 are agents and each agent may or may not be infected
(by an idea) and one agent can spread the infection to another, but also an

agent can remove an infection. A1l interacts with A2 and A2 interacts with A3.
0 = not infected, 1 = infected. z = A3 state, y = A2 state, r = Al state.

Al +— A2+ A3

A3 A2 Al
z Yy T
Directed Markov model

In column

l

000 001 010 011 100 101 110 111
000 qo P P 0 p 0 0 0
001 (1—4qo)/3 gq 0 P 0 p/2 0 0
010 (1—qo)/3 O q 0 0 0 0 0
T=1| o1 0 r /2 g 0 0 0 (1-—q)/3|—— Outrow

100 (1—q0)/3 O 0 0 qg p/f2 p 0

101 0 0 0 0 0 q 0 (1—q)/3

110 0 0 r/2 0 T 0 g (1—q1)/3
| 111 0 0 0 r 0 T r q1

Transition probabilities are not symmetric
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Quantum Model with directed walk
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Ux =L ® (12 ® Mo + Upz @ My)
Uz =(My@ I+ M @Up.) ® Ip
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Recursion

First step

1o = ac @ ar

po = Yo - B}

pr(1) =Trc (U-po-UY)
pc(l) =Tr {-'!I"IIC - PT(]-} : -'!l"IIc]

_ J.VIC ’ PT{I) 'JIVL:
o pe(D)

-Pc(]-) :pc(l}
Ps(]-) = ]-_Pr:{l}'

For t > 1,while E:—:l Pi(1) < 1, using lifting operation

p(t) = pe(t — 1) ® pc(t — 1)
pr(t) =Tre (U-p(t—1)-UT)
Ps(t] Ir (-f""fs PT(t) )
pe(t) =Tr (M. - pr(t)- M)

M, - pr(t) - M,
pe(t) = D)
Pc{t] - Pc[t - 1) 'pc{t
Ps(t) — Pc(t - 1) 'Ps(t)
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Quantum network A-B-C
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List of Publications, Awards, Honors, etc.
Attributed to the Grant

Busemeyer, J. R., Zhang, Q., Balakrishnan, S.N., & Wang, Z. (2020) Application of Quantum-
Markov Open System Models to Human Cognition and Decision. Entropy, 22, 990; €22090990

Busemeyer, J. R., Kvam, P. D., & Pleskac, T. J. (2020) Comparing Markov Decision Models with
Quantum Decision Models. WIREs Cognitive Science. e1576

Broekaert, J. B., Busemeyer, J. R., and Pothos, E. M. (2020) The Disjunction Effect in two-stage
simulated gambles. An experimental study and comparison of a heuristic logistic, Markov and
quantum-like model. Cognitive Psychology. 117,

Busemeyer, J. R. & Wang, Z. (2019) Hilbert space multidimensional modeling of continuous
measurements. Philosophical Transactions A, 377(2157), 20190142.

Busemeyer, J. R., Kvam, P. D., & Pleskac, T. J. (2019) Markov versus quantum dynamic models
of belief change during evidence monitoring. Scientific Reports, 9, 18025

Busemeyer, J. R. & Pothos, Z. (to appear). Quantum Models of Cognition. R. Sun (Ed) The
Cambridge Handbook on Computational Cognitive Sciences. Cambridge University Press
Rajagopal, K., Zhang, Q., Balakrishnan, S. N., Fakhari, P., & Busemeyer, J. R. (to appear).
Quantum amplitude amplification for reinforcement learning. In K. G. Vamvoudakis (Ed)
Handbook on Reinforcement Learning and Control. Springer Studies in Systems, Decision and
Control

Busemeyer, J. R. & Wang, Z. (2019). Introduction to Hilbert space multi-dimensional modeling. In

Aerts, D., Khrennikov, A. |., Melucci, M., & Toni, B. (Eds.). (2019). Quantum-Like Models for
Information Retrieval and Decision-Making. Springer Books
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