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Inferring internal state from human behavior.
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What if we have the wrong human model?
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2. Detect that the model is wrong.
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Are there fundamental, general-purpose 
ways in which the model is wrong?
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Duplicates Problem
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We need to account for how similarity in 
trajectories should influence their probability.

Key Insight
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Boltzmann:

LESS:

Limit Errors due to Similar Selections

Similarity Metric
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LESS as a Human Decision Model

Control trial Experimental trial



LESS as a Human Decision Model

O1: Boltzmann predictions are significantly 
different from observed proportions.

O2: LESS predictions have a tighter 
equivalence bound to the observed 
proportions than Boltzmann predictions.



Using LESS for Robot Inference

Gridworld Sampling under θ



LESS Sampling

When human input is generated using LESS, inference quality is 
significantly higher with LESS than with Boltzmann.
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When human input is generated using Boltzmann, inference 
quality is significantly higher with Boltzmann than with LESS.

Boltzmann Sampling



Robust Inference for Robot Arms



𝑃 𝜉 = "!(, % )

∫( "!(, % )$%

𝑃 𝜉 ∝
𝑒$(& ' )

∫) 𝑠(𝜙 𝜉 , 𝜉)𝑑𝜉
=

𝑒$(& ' )

∫) 𝑠(𝜙 𝜉 , 𝜉)𝑑𝜉

∫)
𝑒$(& +' )

∫) 𝑠(𝜙 .𝜉 , 𝜉)𝑑𝜉
𝑑 .𝜉

Boltzmann:

LESS:

Computing the denominator 
is intractable!

Need to sample Ξ!
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Performing inference with LESS across multiple trajectory sets 
results in higher robustness than inference with Boltzmann.
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Rationality coefficient



Estimate apparent rationality. 
If the human appears irrational to the robot, 

the robot has the wrong model of the human.

Key Insight
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Demonstration, correctly specified



Demonstration, noisy



Demonstration, misspecified
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Key Insight 
(Updated for efficiency)

When the human input appears to waste effort, 
the robot has the wrong model of the human.





Objectives

Naïve Learning Relevance-Aware Learning
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Implicit Communication in HMC (Dragan)
Research Objectives:

1. Enable robots to infer implicit 
meaning in human actions.

2. Enable humans to infer implicit 
meaning in robot actions.

Key Scientific Contributions:

• observation models for human 
preferences, goals, etc.

• dynamics models for human belief

• tractable optimization with human state

• theoretical analysis of collaboration

Technical Approach:

1. Run (active) Bayesian estimation over 
human internal state.

2. Augment physical state with human 
belief, and optimize KL-divergence of 
human belief from true robot state.

DoD Benefits:

• better human-machine coordination

• machines that adapt to human 
preferences, capabilities, moods

• machines that are robust to under- or 
mis-specification of objectives 
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