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Edmund H. Durfee and Satinder Singh, University of Michigan

Objective: 
• Improve ability of machine to know when to ask 

human for clarification, and what to ask
• Exploit autonomous capabilities while reliably 

meeting commitments to teammates 

Approach: 
• Integrate sequential decision, expected value-of-

information, and cover-set methods for querying
• Make probabilistic commitments and revise their 

pursuit in a constrained responsive manner

DoD Benefits:
• Avoid (bad) surprises to human operator
• Autonomous systems proactively seek clarification
• Flexible but reliable autonomous systems

Progress:
• Suite of methods for asking most informative 

queries to increase safety and reward
• Principled semantics for pursuing and interpreting 

commitments, and for querying to rapidly find 
optimal cooperative commitments
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List of Project Goals

1. Develop methods for finding (approximately-)optimal 
queries for resolving reward uncertainty

2. Develop methods for finding (approximately-)optimal 
queries for resolving safe side-effect uncertainty

3. Integrate querying for both reward and safety uncertainty
4. Develop principled semantics for probabilistic 

commitments in Bayesian settings, and beyond
5. Develop tractable techniques for finding, interpreting, 

and adhering to probabilistic commitments
6. Integrate commitments and querying into a unified 

framework for querying to efficiently converge on an 
optimal cooperative commitment
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Progress Towards Goals (or New Goals)
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1. Projection-based techniques for querying to resolve 
reward uncertainty (ICAPS-17)

2. Querying to resolve safe side-effect uncertainty using 
minimax-regret (AAMAS-18, IJCAI-18) and set-cover 
(AAAI-20, NeurIPS-19 Workshop) techniques

3. Integrate querying for both reward and safety 
uncertainty (S. Zhang PhD dissertation)

4. Develop principled semantics and tractable adherence 
techniques for probabilistic commitments in Bayesian 
settings (JAAMAS-20, ICAPS-17, IJCAI-16)

5. Develop interpretation strategies for commitments of 
achievement and maintenance (AAAI-20)

6. Unify commitments and querying into a framework for 
querying to efficiently converge on an optimal 
cooperative commitment (OptLearnMAS@AAMAS-20)



Projection-Based Querying Under Reward Uncertainty
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Reward Uncertainty: Which behaviors would most/least satisfy user?
Query optimization: What multiple (k-ary) choice query will elicit the most 
valuable information to resolve the uncertainty.
Key contributions/results:

– Prove that no query can outperform a query offering k policies to choose from
– Submodularity supports greedy approximation, but still too many policies to check
– Define an appropriately-constrained MILP to construct next policy to greedily add
– Develop method to project policy queries to easily answerable trajectory queries
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Minimax-Regret Querying for Safely-Optimal Plans
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Safety Uncertainty: Which side-effects are acceptable, and which aren’t?
Query optimization: Beginning with a safe plan, which k possible side-
effects to ask if they are free to do, so as to maximally improve the safe plan
Key contributions/results:

– Efficiently finding dominating policies to provably identify relevant side-effects
– MMRQ-k: Adversarial search method to quickly find minimax-regret k-ary query

MMRQ-k always 
finds the minimax-
regret query.

MMRQ-k finds the 
minimax-regret 
query much faster



Set-Cover Methods for Safe Side-Effect Planning
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Safety Uncertainty: Which side-effects are acceptable, and which aren’t?
Safe Planning: With no initial safe plan, ask about as few side-effects as 
possible (in expectation) to find one or prove none exists
Key contributions/results:

– Formulate the search problem as a pair of parallel set-cover problems
– Develop heuristics to find best side-effect to ask to progress on both problems

If both sets contain safe carpets, 
then a safe policy exists.

If both sets contain unsafe carpets, 
then no safe policy exists.



Querying Under Both Safety and Reward Uncertainty
Reward & Safety Uncertainty: Unsure what to achieve and what to avoid!
Sequential Querying: Keep asking a reward or safety query until cost of 
querying exceeds expected improvement. Challenge: What to ask next?
Key contributions/results:

– Formulate the querying problem as a joint optimization problem
– Develop heuristics that strike different tradeoffs between cost and effectiveness

The batch-query-
based heuristic 
has higher 
objective value.

The dominating-
policy-based 
heuristic finds a 
safe policy with a 
higher value, but 
also poses more 
queries.

The myopic 
heuristic asks the 
fewest queries.



Tractable Commitment-Constrained Autonomy
Probabilistic Commitment: Achieve condition uc by time Tc with prob pc

Model Uncertainty: During execution, learn more about goals and actions
CC Autonomy: Autonomously adjust to new model but respect commitment
Key contributions/results:

– Prescriptive semantics for commitment constrains autonomy to be dependable
– Planning balances local reward and cost, while provably assuring commitment



Probabilistic Commitment: Recipient’s Interpretation
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Probabilistic Commitment: Achieve condition uc by time Tc with prob pc

Provider’s Behavior: Any policy that satisfies commitment. Also provider 
can flexibly change its policy in response to model updates.
Recipient’s Behavior: Policy to preferably take advantage of the 
commitment by exploiting the establishment of uc by time Tc with prob pc

Recipient’s Challenge: How to model condition uc between times T0 and Tc

Suboptimality: Difference between performance of recipient’s policy given 
its hypothesis about how to model the condition uc and its real behavior
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Probabilistic Commitment: Recipient’s Interpretation

Pessimistic (?) Hypothesis: Minimum Enablement Duration



Suboptimality for Achievement vs Maintenance
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If gate unexpectedly stays open longer than 
modeled, performance can get worse!

If gate unexpectedly opens earlier than 
modeled, performance can only improve.



Suboptimality for Achievement vs Maintenance

Conclusion: 
– Maintenance commitments are inherently harder…
– But they are harder for the recipient, not for the provider!

Implications: 
– On limitations of existing commitment-based coordination frameworks
– On maintenance commitments needing more details

• Sacrifice some flexibility of the provider to improve performance of the recipient



Querying for Optimal Cooperative Commitments
Cooperative Commitments: Find Tc and pc maximizing joint reward
Decentralized: Each agent only knows its own reward function
Querying Challenge: Too many combinations of Tc and pc to ask about!
Key contributions/results:

– Prove structural regularities between parameters Tc and pc and agents’ rewards
– Use regularities to prune large portions of the space of Tc and pc combinations
– Exploit submodularity to form approximately optimal k-ary commitment query

Runtime (sec.)EUS, k = 5  

Evaluating Greedy

Best performance ………………..at lowest cost
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