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How is Learning Integrated with Performance for 
Autonomous Agents in Dynamic Environments?

• Key Challenge: Performance & learning must be real-time
– Must keep up with environmental dynamics with bounded 

computation. 
– Even as long-term knowledge grows.  
– Across the breadth learning we find in humans.

• Surprisingly little analysis on complexity of online learning 
algorithms in AI. 
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Possible Types of Learning

5

Perceptual Learning

Category and Concept Learning

Recognition
Procedure Learning

Temporal-Difference Learning
Learning by Analogy

Rehearsal
Self-Explanation

Experimentation

Episodic Learning
Meta-Learning

Learning by Instruction
Imitation Learning

Discovery

Learning by Demonstration

Sequence Learning
Practice & Rehearsal

How are these types of learning integrated in agent architecture?



Cognitive Architecture Hypothesis
• Complex cognition arises from a combination of:

– a fixed set of computational building blocks (memories, processes, 
representations, learning mechanisms); and 

– knowledge (innate and learned through experience).

Allen Newell John Anderson



Our Hypothesis: Two Levels of Learning

1. Architecture mechanisms (L1) for basic learning
• Innate, automatic, continuous, online, not under agent control.
• Parasitic process on top of task performance.
• Small fixed number of mechanisms.
• Examples: production composition, chunking, episodic memory 

storage.
2. Knowledge-based strategy (L2) for complex learning

• Hijacks task processing via metacognition and deliberation.
• Create experiences for L1s: no additional learning mechanisms. 
• Can be learned – no fixed number.
• Examples: learn from instruction; retrospective analysis; 

deliberate training; experimentation or exploration; ...
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Perceptual Learning

Category and Concept Learning

Recognition
Procedure Learning

Temporal-Difference Learning
Learning by Analogy

Rehearsal
Self-Explanation

Experimentation

Episodic Learning
Meta-Learning

Learning by Instruction
Imitation Learning

Discovery

Learning by Demonstration

Sequence Learning
Practice & Rehearsal

Level 1 Level 2



Test Hypothesis:
Common Model of Cognition

Dig into how performance and learning are integrated 
in Common Model for architectural learning (L1).
• What processing is done during task performance?
• How is learning integrated with performance?

1. What data (and metadata) is used for learning? 
2. What processing is performed with that data?
3. What is the computational complexity of learning? 
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Common Model of Cognition
 An abstract specification of human-like cognitive 

architecture
 Community consensus/agreement
 Not itself a cognitive architecture
 Still missing many components 

 Perceptual and motor learning

 A set of communicating processing and memory modules
 Processing is parallel across modules 
 Processing is parallel within modules 
 Learning mechanisms associated with many modules

 Cognitive cycle: sequential actions
 Complex behavior arises from a sequence of cognitive cycles: 

 Each cycle is 50msec in humans
 No additional modules for complex cognition

Laird, J. E., Lebiere, C. & Rosenbloom, P. S. (2017). A Standard Model for the Mind: Toward a Common Computational 
Framework across Artificial Intelligence, Cognitive Science, Neuroscience, and Robotics , AI Magazine 38(4). 10



Why Common Model?

1. Covers a range of implemented, well-researched 
cognitive architectures: Soar, ACT-R, Sigma, Spaun, 
LIDA, …

2. Includes multiple architectural learning mechanisms. 

3. Has strong connections to the human mind and brain.
– Andrea Stocco presentation @2:15pm.
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Agent Architecture: Data/Knowledge
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Agent

Declarative Memory: DM

Working Memory: WM

Procedural Memory: PM
→
→
→
→
→

→
→
→
→
→

Perception: P Motor: M

• Working Memory [WM]: Perception, situational awareness, goals, intentions, hypotheticals, …
• Declarative Memory [DM]: Facts, beliefs, experiences, …
• Procedural Memory [PM]: Skills, procedures, goal structures, ... 

• Architecture processing and 
structure is fixed, not open to 
learning

• Memories contain independent 
knowledge elements.



Agent Architecture: Data/Knowledge
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Agent

Declarative Memory: DM

Working Memory: WM

Procedural Memory: PM
→
→
→
→
→

→
→
→
→
→

Perception: P Motor: M

• Perception: Change to WM from sensors
• ΔP → ΔWM

• Internal Action: Changes to WM initiated by procedural memory (PM)
• ΔWM; WM; PM → ΔWM

• DM Retrieval: Cue in WM leads to retrieval from declarative memory (DM) into WM 
• ΔWM; WM; DM → ΔWM

• Motor Action: Command in WM is sent to motor system
• ΔWM → ΔM

Main computational cost is 
accessing PM and DM 
relative to WM. 

Everything else is cheap.Actions Memory Retrieval



Agent Data & Meta Data
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Agent

Declarative Memory: DM

Working Memory: WM

Procedural Memory: PM
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• Working Memory Metadata [WM*]: History of creation & access → activation.
• Declarative Memory Metadata [DM*]: History of creation & access → activation.
• Procedural Memory Metadata [PM*]: History of access, expected utility, …

Metadata = 
numeric/statistical data 
associated with agent data.

Not directly testable by 
procedural memory.

Actions Memory Retrieval



Agent Internal Action: with Metadata
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Agent

Declarative Memory: DM

Working Memory: WM

Procedural Memory: PM
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Perception: P Motor: M

Action: ΔWM; WM; PM → ΔWM
with PM* & WM* ΔWM; WM; WM*; PM; PM* → ΔWM; ΔWM*; ΔPM*

• Procedural metadata [PM*] and working memory metadata [WM*] influence which available 
actions [PM] modify WM.

• Working memory [WM*] and procedural memory metadata [PM*] are updated.

Learning! [RL]

Learning = change to long-term 
memory structures 

Actions Memory Retrieval



Agent Action with Learning
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Agent

Declarative Memory: DM

Working Memory: WM

Procedural Memory: PM
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Perception: P Motor: M

Action: ΔWM; WM; PM → ΔWM
with PM* & WM* ΔWM; WM; WM*; PM; PM* → ΔWM; ΔWM*; ΔPM*   
with learning ΔWM; WM; WM*; PM; PM* → ΔWM; ΔWM*; ΔPM*; ΔPM; ΔDM; ΔDM*

• Learn new procedural knowledge (chunking, procedure composition)
• Learn new declarative knowledge (declarative learning – semantic/episodic)
• Update declarative memory metadata (recency, frequency, …)

Learning 

Actions Memory Retrieval



Agent DM Retrieval with Learning
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Agent

Declarative Memory: DM

Working Memory: WM

Procedural Memory: PM
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DM Retrieval: ΔWM; WM; DM → ΔWM
with DM* & WM*: ΔWM; WM; WM*; DM; DM* → ΔWM; ΔWM*; ΔDM*

Declarative memory metadata [DM*] and working memory metadata [WM*] influence which 
structure is retrieved from declarative memory [DM].

Actions Memory Retrieval



Agent Metadata Maintenance & Forgetting
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Agent

Declarative Memory: DM

Working Memory: WM

Procedural Memory: PM
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• WM decay: WM* → ΔWM*
• PM decay: PM* → ΔPM*
• DM decay: DM* → ΔDM*

• WM Forgetting: ΔWM* → -WM
• PM Forgetting: ΔPM* → -PM
• DM Forgetting: ΔDM* → -DM

Update recency/frequency metadata of 
unchanged data. 

Removed data that has decayed beyond 
threshold. 

Local calculations that are easily 
parallelizable

Actions Memory Retrieval



Summary: Performance and Learning

1. Task Performance: Changes to working memory
– ΔWM; WM; WM*; PM; PM*  → ΔWM
– ΔWM; WM; WM*; DM; DM* → ΔWM
– Requires access to PM and DM relative to WM.

2. Short-term Metadata:
– ΔWM → ΔWM*
– Update accessed WM metadata

3. Learning: Changes to Long-term Memory
– ΔWM; WM; WM*; DM; DM* → ΔDM*, ΔDM, ΔPM*, ΔPM
– Update metadata based on data and metadata accessed by task performance.
– Create structures based on data and metadata accessed by task performance.

4. Metadata Decay and Forgetting: 
– WM* → ΔWM*; WM* → ΔWM; ΔPM* → -PM; ΔDM* → -DM
– Local update of WM, PM, DM metadata
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Avoid additional 
PM/DM accesses; 
use accessed 

Main computational 
expense is accessing 
PM/DM



Limits of Pure Architectural Learning

1. No “deliberate” learning
– Can’t decide to learn something. 
– Suggests need for meta-cognitive control.

2. Constrained to incremental, constant-time learning algorithms
– Suggests need for unconstrained learning analysis. 

3. Learns from data recently accessed by task processing.
– Limited temporal horizon.
– Difficult to quickly learn temporal regularities across longer time scales.
– Suggests need for access to DM during learning. 

– Difficult to learn implications of current knowledge.
– Suggests need for access to PM during learning for planning/etc.

22



Hypothesis: Second Level of Learning
Knowledge-based strategies 

• Occurs during task slack time (but interruptible)
– Another task the agent pursues
– Finesses real time, bounded computation issues. 

• Metacognitive reasoning across multiple cycles
– Accesses DM, PM, M to bring in temporally distant data of L1.
– Creates “experiences” for L1 mechanisms to learn from (no new 

mechanisms) 
• Create historical, hypothetical/counterfactual experience from memory
• Create novel experiences through environmental exploration
• …

• Allows unconstrained processing of experiences when there 
was insufficient time during task performance.
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Contrasts between L1 and L2

• L1 continual architectural learning
– Fast, bounded processing with constrained task knowledge and 

task metadata all the time.

• L2 intermittent learning strategy
– Arbitrary processing with arbitrary task knowledge at limited

times.

• What about metadata for L2 learning?
1. Episodic memory 
2. Deliberate maintenance of metadata in semantic memory
3. Architectural process data that is made explicit (in WM). 

• Failures to retrieve data from long-term memories
• Failures in perception and motor
• Innate appraisals: surprise, goal failure, loss of control, … 
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Architectural Process Metadata
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Agent

Declarative Memory: DM

Working Memory: WM

Procedural Memory: PM
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Procedural Memory Process Metadata [PMP*]:
• Retrieval failure (impasse in Soar)
Declarative Memory Process Metadata [DMP*]:
• Retrieval failure
Working Memory Process Metadata [WMP*]:
• Surprise and other appraisals
Perception Process Metadata [PP*]
• Failure, …
Motor Process Metadata [MP*]
• Completion, fault, …

Available in working memory for 
metacognition, such as reasoning 
about failure.

Available to architecture for 
learning: episodic memory and 
RL.  



Summary and Conclusion

• Analysis of how learning can be integrated with 
performance for autonomous agents under time constraints

• Analysis of L1 learning in Common Model
– Identify importance of metadata
– Identify shortcomings that lead to necessity of L2
– Identify need for metadata access in L2

• Next talk shows how L1 and L2 mechanisms support 
Interactive Task Learning

• Still long way to go to completely understand this.
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