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Testing a Common Model for Human and Human-Like Intelligence

Objective:

« Develop principles to translate cognitive architectures into
dynamical brain network models

» Test the reliability of Common Model of Cognition (CMC, a
consensus architecture) as a blueprint of brain

architecture

Approach:

« Compare alternative network models by fitting them to
large-scale neuroimaging data

+ HCP: Human Connectome Project (fMRI + MEG)

DoD Benefits:

* Link between cognitive architectures and computational
neuroscience

« Convergent evolution of human and human-like

intelligence

* General-purpose neurally-inspired architecture for Al

Progress:

+ Tested fMRI data from N=200 participants from HCP
dataset performing 7 tasks (Social, Emotion, WM, DM,
Language, Math, Reasoning)

* Publications: Two journal papers + one conference paper

submitted

* New pipeline in development: Bilateral ROls, parallel
processing, resting state data

—= 2. Dynamic Network Models <—

Andrea Stocco, University of Washington
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List of Project Goals

1. Develop a methodology to translate cognitive
architectures into testable network brain architectures
— Language for abstract architecture definition
— Pipeline to map components to brain and fit models

2. Test and compare alternative architectures
— Task-based fMRI data
— Resting-state data
3. Validation of the results
— Parameter analysis
— Alternative methods
— MEG/EEG data



Progress Towards Goals (or New Goals)

1. Develop a methodology to translate cognitive
architectures into testable network brain architectures
— Language for abstract architecture definition
— Pipeline to map components to brain and fit models

2. Test and compare alternative architectures
— Task-based fMRI data
— Resting-state data
3. Validation of the results
— Parameter analysis
— Alternative methods
— MEG/EEG data
— Ground Truth with Clinical Population



A Standard Model of the Mind:
Toward a Common Computational

Framework Across Artificial Intelligence,

Cognitive Science, Neuroscience,

and Robotics

John E. Laird, Christian Lebiere, Paul S. Rosenbloom

B A standard model captures a com-
munity consensus over a coherent region
of science, serving as a cumulative ref-
erence point for the field that can pro-
vide guidance for both research and
applications, while also focusing efforts
to extend or revise it. Here we propose
developing such a model for humanlike
minds, computational entities whose
structures and processes are substan-
tially similar to those found in human
cognition. Our hypothesis is that cogni-
tive architectures provide the appropri-
ate computational abstraction for defin-
ing a standard model, although the

support intelligent behavior. Humans possess minds,

as do many other animals. In natural systems such as
these, minds are implemented through brains, one particular
class of physical device. However, a key foundational hypoth-
esis in artificial intelligence is that minds are computational
entities of a special sort — that is, cognitive systems — that
can be implemented through a diversity of physical devices
(a concept lately reframed as substrate independence
[Bostrom 2003]), whether natural brains, traditional general-
purpose computers, or other sufficiently functional forms of
hardware or wetware.

g mind is a functional entity that can think, and thus

Laird, Lebiere, & Rosenbloom, 2017, Al Mag

Articles



Common Model of Cognition
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Could the CMC be a candidate

brain architecture?
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Mapping CMC Components

Human brain is divided

(A) Long-Term

into small number (~ 10) Memory
of functional networks
(Power 2010 eo

Each CMC components
can be identified with at Lot Lotera Loft Media
least one.



Data: Human Connectome Project

« Contains high-quality neuroimaging data:
— 1,200 Adult Participants
— 7 Different Tasks

— 4 Resting State Sessions
— fMRI + MEG data (subset)
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Data: Human Connectome Project

« Contains high-quality neuroimaging data:

— 200 out of Adult Participants
— 6 Different Tasks
— fMRI +

Siemens Skyra, Multiband

TR 720 ms MB factor 8x N Slices 72

TE 33.1 ms FOV 208 x 180 mm Slice Gap Omm
FA 52° In-planeres 2 x2 mm Slice thick 2mm
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What Tasks?

Motor Buckner et al. 2011) Hand, arm, foot, leg, voice responses
Emotional Hariri et al. (2002) Fearful faces vs. Neutral Shapes
Incentl\_/e Delgado et al. (2000) Lo_smg blocks vs. “Winning” blocks of

Processing choices
Language Binder et al. (2011) Language blocks vs. Math blocks
Relational Smith et al. (2007) Relational arrays vs. Control arrays
Social Whitley et al. (2007) Interacting shapes vs. Randomly moving
Working Memory (cht))tagshevsky it 2-back vs 0-back blocks

12



Comparison Criteria

We cannot tell whether the CMC is “true”, but we can
tell whether it is “better”
e Superiority
— The CMC should provide a better account of
brain activity than alternative architectures
 Generality
— The superiority of the CMC should be invariant
across tasks

13



Alternative Architectures

“Hub-and-Spoke” Family

e Single central region, H

e Multiple nodes N1, N2, N3

¢ Bidirectional connections
(spokes) btw hub and nodes

“Hierarchical” Family

e Starts with Perception (P)

e Ends with Action (A)

¢ Bidirectional connections
between consecutive nodes

14



Seven Alternative Architectures

(A) Common Model of Cognition

Hierachical 1

Hierarchical 2

<+— Shared with CMC
< -- Missing (was in CMC)

<— New (notin CMC)
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Define the Regions of Interests (ROIs)
For Each Network

(A) Emotion Processing (B) Incentive Processing (C) Language & Math
36 14

1

32

’ 24
‘ ”
0

(D) Relational Reasoning (F) Working Memory
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Fitting Network Models

Traditional GLM
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Fitting Network Models

Traditional GLM Dynamic Causal Modeling

dy/dt = Ay + ZxB(i)y + Cx + Zl.ij(/)y
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Comparing Models

* Many criteria exists
— AIC, BIC, Log-likelihood...

* Inter-subject variability a major concern, so we used
Bayesian approach:

— Posterior probability that a model is true, given
the data

— Each architectures’ PDF is modeled as a
Dirichlet distribution ~ Dir(a)

21
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Comparison Criteria

Two criteria
e Superiority
— The CMC should provide a better account of
brain activity than alternative architectures
 Generality
— The superiority of the CMC should be invariant
across tasks
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The P<>A Confound

(A) Common Model of Cognition
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The P<>A Confound

(A) Common Model of Cognition
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CMC = Hub-and-Spoke PFC + P-4

Long-term Long-term
Memory Memory
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CMC Hub-and-Spoke, PFC
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CMC = Hub-and-Spoke PFC + P-4

CMC Hub-and-Spoke, PFC
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Are All Connections Necessary?

(A) Common Model of Cognition
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Are All Connections Necessary?

(A) Common Model of Cognition

Action
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.
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Connectivity Values Across Tasks
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Interim Conclusion

e The CMC works surprisingly well as a high-level
architecture for the human brain
— Fits the generality and superiority criteria

e The success rests on two factors:

— A central hub (Working Memory/PFC), which might
function as a global workspace
— A direct P—A connection

¢ Reminescent of dual-control theories

— Automatic vs. Controlled (Schneider & Shiffrin)

— Contention Scheduling + Executive (Norman & Shallice)
— System 1 / System 2 (Kahneman)
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1.

2.

3.

Progress Towards Goals (or New Goals)

Develop a methodology to translate cognitive
architectures into testable network brain architectures
— Language for abstract architecture definition
— Pipeline to map components to brain and fit models

Test and compare alternative architectures
— Task-based fMRI data
— Resting-state data
Validation of the results
— Parameter analysis
— Alternative methods
— MEG/EEG data

— Ground Truth with Clinical Population
38



Parkinson’s Disease (PD)

Progressive Depletion of Dopamine in PD

Healthy PD, Early Stages PD, Late Stages
Controls No Symptoms w/ Symptoms
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Why?

Main reason: It’s the ultimate test
— Solid ground truth

Known etiology = known localized source
known symptoms = predictable effects on
network parameters

In addition, opportunity to

Examine resting-state data
Examine bilateral regions
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Procedural Memory in the CMC
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Procedural Memory in the CMC

Direct

< Modulatory
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Resting State + Bilateral ROIs

Low-Frequency Regressors Sine Regressors for Resting State

(A)

Left Lateral Left Medial
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PD-Related Differences in Parameter Values

Modulatory CMC
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PD-Related Differences in Parameter Values
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