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Objective: 
• Develop principles to translate cognitive architectures into 

dynamical brain network models 

• Test the reliability of Common Model of Cognition (CMC, a 
consensus architecture) as a blueprint of brain 
architecture  

Approach:
• Compare alternative network models by fitting them to 

large-scale neuroimaging data

• HCP: Human Connectome Project (fMRI + MEG)

DoD Benefits:
• Link between cognitive architectures and computational 

neuroscience

• Convergent evolution of human and human-like 
intelligence

• General-purpose neurally-inspired architecture for AI

Progress:
• Tested fMRI data from N=200 participants from HCP 

dataset performing 7 tasks (Social, Emotion, WM, DM, 
Language, Math, Reasoning)

• Publications: Two journal papers + one conference paper 
submitted

• New pipeline in development: Bilateral ROIs, parallel 
processing, resting state data

2. Dynamic Network Models

1. Competing Architectures

3. fMRI Data (N = 200, 7 Tasks)

4. Model Comparisons



1. Develop a methodology to translate cognitive 
architectures into testable network brain architectures

– Language for abstract architecture definition
– Pipeline to map components to brain and fit models

2. Test and compare alternative architectures
– Task-based fMRI data
– Resting-state data

3. Validation of the results
– Parameter analysis
– Alternative methods
– MEG/EEG data

3



1. Develop a methodology to translate cognitive 
architectures into testable network brain architectures

– Language for abstract architecture definition
– Pipeline to map components to brain and fit models

2. Test and compare alternative architectures
– Task-based fMRI data
– Resting-state data

3. Validation of the results
– Parameter analysis
– Alternative methods
– MEG/EEG data
– Ground Truth with Clinical Population

4



5
Laird, Lebiere, & Rosenbloom, 2017, AI Mag
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Common Model of Cognition
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Could the CMC be a candidate 
brain architecture?
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Could the CMC be a candidate 
brain architecture?

Mattar et al.,2015

Bszdoc et al., 2016

Wang et al., 2013



Mapping CMC Components

• Human brain is divided 
into small number (~ 10) 
of functional networks 
(Power, 2010; Yeo, 
2011)

• Each CMC components 
can be identified with at 
least one.
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Data: Human Connectome Project

• Contains high-quality neuroimaging data:
– 1,200 Adult Participants 
– 7 Different Tasks
– 4 Resting State Sessions
– fMRI + MEG data (subset)
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Data: Human Connectome Project

• Contains high-quality neuroimaging data:
– 200 out of 1,200 Adult Participants 
– 6 out of 7 Different Tasks
– 4 Resting State Sessions
– fMRI + MEG data (subset)
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Siemens Skyra, Multiband

TR 720 ms MB factor 8x N Slices 72

TE 33.1 ms FOV 208 x 180 mm Slice Gap 0mm

FA 52° In-plane res 2 x 2 mm Slice thick 2mm



What Tasks?
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Task Reference Description

Motor Buckner et al. (2011) Hand, arm, foot, leg, voice responses 

Emotional Hariri et al. (2002) Fearful faces vs. Neutral Shapes

Incentive 
Processing Delgado et al. (2000) “Losing” blocks vs. “Winning” blocks of 

choices 

Language Binder et al. (2011) Language blocks vs. Math blocks 

Relational Smith et al. (2007) Relational arrays vs. Control arrays

Social Whitley et al. (2007) Interacting shapes vs. Randomly moving

Working Memory Dobryshevsky et al. 
(2006) 2-back vs 0-back blocks 



Comparison Criteria

We cannot tell whether the CMC is “true”, but we can 
tell whether it is “better”
• Superiority

– The CMC should provide a better account of 
brain activity than alternative architectures

• Generality
– The superiority of the CMC should be invariant 

across tasks
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Alternative Architectures

“Hub-and-Spoke” Family
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• Single central region, H
• Multiple nodes N1, N2, N3
• Bidirectional connections 

(spokes) btw hub and nodes

“Hierarchical” Family
• Starts with Perception (P)
• Ends with Action (A)
• Bidirectional connections 

between consecutive nodes 

H

N1

N3

N2

N1

P

N2

A



Seven Alternative Architectures
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Shared with CMC

Missing (was in CMC)

New (not in CMC)
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“Fantastic Architectures
and Where to Find Them”



Data Analysis Pipeline
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GLM analysis, 1st 
level (canonical) 

GLM analysis, 1st 
level (for DCM)

Subject-level quality 
Control

Individual-level
ROIs coordinates

Bayesian model
comparison

ROI timeseries 
extraction (PCA)

GLM analysis,
2nd Level

Group-level
ROI seed coordinates

Network Architectures 

Network 1
Network 2

Network 3
Network 4

Network 5

HCP fMRI Data

Emotion
Incentive
Language

Relational
Social

WM

Architecture Description

Common Model
Hierarchical 1

Hierarchical 2
Hub & Spoke 1

Hub & Spoke 2

Model fitting

Abstract description 
language 

Preprocessing



Define the Regions of Interests (ROIs)
For Each Network
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Fitting Network Models 
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y = Σi βi*xi

Traditional GLM 

?



Fitting Network Models 
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dy/dt = Ay + ΣixiB(i)y + Cx + ΣjyjD(j)y y = Σi βi*xi

Traditional GLM Dynamic Causal Modeling



Comparing Models
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• Many criteria exists
– AIC, BIC, Log-likelihood…

• Inter-subject variability a major concern, so we used 
Bayesian approach:
– Posterior probability that a model is true, given 

the data
– Each architectures’ PDF is modeled as a 

Dirichlet distribution ~ Dir(α)     



Comparing Models
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Comparison Criteria

Two criteria
• Superiority

– The CMC should provide a better account of 
brain activity than alternative architectures

• Generality
– The superiority of the CMC should be invariant 

across tasks 
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Results: All Tasks

24



All Tasks, Separate + Combined
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Exceedance Probabilities
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The P↔A Confound

27

Procedural
Memory

Working
Memory

Perception Action

Long-term
Memory



The P↔A Confound
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CMC ≈  Hub-and-Spoke PFC + P↔A
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CMC/Hub PFC Family

CMC ≈  Hub-and-Spoke PFC + P↔A
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Results, All Architectures + P↔A 
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Results, All Architectures + P↔A 
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Are All Connections Necessary?
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Are All Connections Necessary?
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Are All Connections Necessary?
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Connectivity Values Across Tasks

36Might be related to John Lairds’s meta-learning 
data from his first talk ?



Interim Conclusion
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• The CMC works surprisingly well as a high-level 
architecture for the human brain
– Fits the generality and superiority criteria

• The success rests on two factors:
– A central hub (Working Memory/PFC), which might 

function as a global workspace
– A direct P↔A connection

• Reminescent of dual-control theories
– Automatic vs. Controlled (Schneider & Shiffrin)
– Contention Scheduling + Executive (Norman & Shallice)
– System 1 / System 2 (Kahneman)



1. Develop a methodology to translate cognitive 
architectures into testable network brain architectures

– Language for abstract architecture definition
– Pipeline to map components to brain and fit models

2. Test and compare alternative architectures
– Task-based fMRI data
– Resting-state data
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– MEG/EEG data
– Ground Truth with Clinical Population

38



Parkinson’s Disease (PD)

39

Healthy
Controls

PD, Early Stages
No Symptoms

PD, Late Stages
w/ Symptoms

Progressive Depletion of Dopamine in PD



Why?
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• Main reason: It’s the ultimate test
– Solid ground truth
– Known etiology = known localized source
– known symptoms = predictable effects on 

network parameters
• In addition, opportunity to

– Examine resting-state data
– Examine bilateral regions 



Procedural Memory in the CMC
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Procedural Memory in the CMC
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Stocco et al., 2010 Frank & O’Reilly, 2006



Procedural Memory in the CMC
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Resting State + Bilateral ROIs
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Low-Frequency Regressors Sine Regressors for Resting State

Individualized locations of bilateral ROIs across participants 



Comparison
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Comparison
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PD-Related Differences in Parameter Values
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PD-Related Differences in Parameter Values
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p < 0.0001p < 0.0001
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