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Visual Perception and Reasoning (Tsotsos)

Research Objectives:

•How do humans reason about visual stimuli? 

•How do we solve tasks that require 
recognizing and relating different elements of 
our visual field in order to do everyday tasks 
like make a sandwich, solve a puzzle, drive a 
car, walk the streets, or describe a picture?

• We wish to learn how to build flexible, 
adaptive active artificial agents that perceive 
and behave

Key Scientific Contributions:
The year's contributions include:
• Novel experimental facility for human studies 

of active observation in 3D visuospatial tasks
• First results on 'same-different' task show a

complex range of human strategies
• Demonstrated how early salience-based 

selection is not part of the visual categorization 
solution in humans

• New theoretical arguments regarding the
computational nature and necessity of an 
attentional control process

Technical Approach:
• Data-informed, scientific method, strategy –

need to understand problem nature
• Roots in ‘complexity level analysis’ (Tsotsos 1990)
• Core elements include Selective Tuning Theory for 

Visual Attention and Ullman’s Visual Routines
• Evaluation based on: 

1) replication of existing experimental results; 
2) new experiments based on model predictions;
3) new spin-off applications.

DoD Benefits:
• DoD seeks to develop techniques and systems 

that are robust, scalable, and capable of learning 
and acting with varying levels of autonomy, and 
as components of networked sensors, knowledge 
bases, autonomous agents, and human teams.

• Active control for dynamic adaptation in 
perception-behavior systems



List of Project Goals

There are 8 project threads:

Thread
I. Selective Tuning Attentive Reference model 

(STAR)
II. Selective Tuning (ST) model of attention
III. Visual Hierarchy
IV. Cognitive Programs (CP)
V. Task Compilation into CPs
VI. Working Memory
VII. Executive Control: Attention
VIII. Executive Control: Task

Seek to test: General purpose intelligent systems are not constructed as a large 
collection of uni-taskers.  Although we seem to be able to build any uni-tasker 
we can think of (chess, GO, Starcraft...), we still need to discover how to build 
one system that can do all of it. Our claim is that general purpose intelligence is 
due to a single system that is tuned and configured differently for each required 
situation, and performs differently for each situation, from near immediate and 
perfect responses to extremely slow and error-prone responses. The key to this 
approach is a deep understanding of the nature of intelligent behavior.



Progress Towards Goals (or New Goals)
2019 Presentation Highlights: 2020 Presentation Highlights:

Human-equivalent performance for fixation control I

First demonstration of attentive priming in a CNN 
framework II, III

New Border Ownership Theory III ➠ New Border Ownership Theory III

New Colour Hue Theory III ➠ New Colour Hue Theory III

Elephant in the Room  III

Several new discoveries from Selective Tuning attention 
model II ➠ Several new discoveries from Selective Tuning attention 

model II

Refutation of Early Selection Theory for Vision I ➠ Refutation of Early Selection Theory for Vision I

Detailed Cognitive Program abstraction levels and 
demonstrated qualitative performance against 4 classic 
attention experiments I

New insights open novel approach to learning executive 
functions VII, VIII ➠ New insights from novel approach to learning executive 

functions VII, VIII

Novel 3D Active Observer Experiments IV

New look at computational foundations for attentional 
control VII



Tsotsos, J. K., Kotseruba, I., & Wloka, C. (2019). Rapid visual categorization is not 
guided by early salience-based selection. PLoS One, 14(10), e0224306.

Tsotsos, J. K., Kotseruba, I., & Wloka, C. (2019). Correction: Rapid visual categorization is not guided by early salience-based 
selection, PLoS One 14 (12), e0226429-e0226429

But please use arXiv:1901.04908

Question : is early salience-based selection part of rapid categorization in vision ?
(Broadbent's 1958 Early Selection Theory)

1. In Bylinskii et al. 2015 we considered 142 saliency models. Since then there are at least 
as many more.  The construct seems thoroughly studied by classical, information-theoretic 
and deep learning methods.  Validation mostly against human fixation heat maps.

2. Test them on the Potter and Thorpe image sets since they form an important part of the 
foundation for modern computer vision (single feedforward pass suffices for categorization). 

3. If early, data-driven, salience-based selection is present in human vision, do any of these 
methods deliver the correct fixation as a first selection? We chose a number of the best 
performing ones of all types.

- If at least one algorithm succeeds in matching human performance, this supports the 
possibility of early salience-based selection in humans and its inspiration for 
machine vision methods.

- If not, where exactly are the algorithm fixations for these image sets? Is there anything 
about these images or these algorithms that lead to the failure?

4. Do humans really need early selection for this task?

https://arxiv.org/abs/1901.04908


Summary of Results
1. Test of saliency algorithms on Potter/Thorpe images:

i. no algorithm reaches human performance on first fixation
ii. CENTER algorithm performs almost as well with significantly 

less cost
iii. no algorithm provides assistance on target-absent images
iv. both Potter and Thorpe image sets have center bias
v. it could be that the right saliency algorithm is yet to be 

discovered; but we have hundreds of attempts so far

2. Human categorization with parafoveal images:
i. human subjects perform almost as well given full 

or parafoveal images
ii.   algorithms require at least 30% of target

within a central parafovea to perform 
well so system fixation must already be at the right location



Implications

• Early selection seems to not play a role in rapid categorization for humans; 
in fact, early selection would seem to be mis-leading rather than helpful

• Structure of original experiments implicitly biases results to centered targets 
and center gaze 

– fast feedforward categorization applies only for centred targets

• Modern computer vision models that employ early selection cannot justify 
this as mimicking human vision

– use of Thorpe's results to motivate CNN's is not valid

• The role of data-driven saliency computation for humans may be limited to 
gaze selection (but that's important enough)

NOTE: Last year's progress report included 
Wloka, C., Kotseruba, I, Tsotsos, J.K., Active Fixation Control to Predict Saccade Sequences, 
CVPR 2018.



Tsotsos, J.K., Abid, O., Kotseruba, I., Solbach, M. On the Control of 
Attentional Processes  (submitted)

PART 1:

Humans excel at a seemingly endless variety of visuospatial tasks. How does that happen? 

We take a 'first principles' computational approach to its understanding that is complementary to the 
previous data-driven or experimental approaches.

stimulus-driven behavior is intractable
Tsotsos 1995

re-frame by partitioning into manageable subsets
Tsotsos 2017; van Rooij 2008

need to decide which applies to each situation

necessity for task executive

vision problem is intractable
Tsotsos 1989; van Rooij 2008

re-frame by partitioning into manageable subsets
Tsotsos 2017; van Rooij 2008

majority of behaviors require more than one vision sub-task
Tsotsos et al. 2018

necessity for attention executive

is the selection of the right behavior for the current task and stimulus a hard problem?

related to Kaelbling
and Griffiths talks 
– but different....



FN - Functional 
MA - Mathematical

Model Classes: 

DG - Directed Graph
DS - Descriptive

AL - Algorithmic

Key Conclusions:
1. attentional functions are of 

very many different kinds

2. the importance of flexible composition of elements to achieve solutions 
for dynamic task presentation

3. there is a decomposition of function that is productively used by top-down control

4. brain regions flexibly shift their functional connectivity patterns with multiple brain networks across a 
wide variety of tasks.

Representative Elements in an Executive Control 
Taxonomy
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Macmillan , N. A. , & Creelman , C. D. ( 2005 ). 
Detection theory: A user ’ s guide . New York : Lawrence Erlbaum Associates .

N-Look - N is the number of distinct test images



Human Visuospatial Abilities
• Vision is more than categorization and attention is more than a 
peak in a saliency map

• Consider the full breadth of human visuospatial ability (Carroll 1993), for example:

Spatial Visualization: processes of apprehending, encoding, and 
mentally manipulating spatial forms (paper folding or spatial relations). 

Speeded Rotation: requires mental transformations but also involves 
manipulations (usually planar rotations) of two-dimensional objects and 
speed is emphasized (card rotation and the flag test, requiring a same-different
judgment for each rotated pattern). 

Visuospatial Perceptual Speed: speed or efficiency of perceptual 
judgments (Identical Pictures Test - quickly identify which of five alternative patterns is 
identical to a model pattern; Hidden Patterns Test: quickly decide whether a simple target 
pattern is present in a more complex pattern). 

• Almost always studied with passive observation of a 2D display
But humans are Active Observers in a 3D world
How to study this behavior?
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2020

< 
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2019

Novel Active Vision Experimental Setup
Markus D. Solbach, John K. Tsotsos , PESAO: Psychophysical Experimental Setup 
for Active Observers , arXiv:2009.09933, Sept. 2020

• 6 x 7.1m controlled environment

• Constrained 4.3 x 3.4m tracking area

Need integrated, high precision, controlled
gaze tracking, head tracking
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PESAO Elements

OptiTrack – 6 camera system

TobiiPro Glasses 2

Custom
Object Tracker

Five 660 LED Video light-panels from 
Neewer  (3200 – 5600K and lumen of 
up to 7300 Lux/m.), one in each corner 
and one ceiling light. 

Custom Tracking Attachment

Integrated software and interface:
http://data.nvision2.eecs.yorku.ca/PESAO/

error: eye gaze - ~2° @ 310cm
head position - <1.5mm
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3D Same-Different Task w/Active Observer

Real 3D Objects
• Inspired by Shepard and Metzler (1971) 

• Rich psychophysical literature 
• Different Complexity Levels
• Common Coordinate System
• Self-Occlusion
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So Far: 
• 66 Subjects, ~23min/subj. , ~11M tracking points (Head Pose alone), 25h of video 
• Configuration space sampled 22 times, 1188 trials to date

(3 complexity levels x 2 possible responses x 3 rotations x 3 starting positions = 54) 
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Some Preliminary Results

Jan.
2020

< 
Dec.
2019

• Questionnaire & Recorded Data
Strategy depends on Object complexity, Object orientation, Initial viewpoint

increasing 
target complexity

⇩
increasing response

time

increasing 
target complexity 

⇩
increasing # fixations 
(interesting 90° data)

many fixations with over 
half-second dwell time
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More Preliminary Results

Jan.
2020

< 
Dec.
2019

observed 
co-occurrences



Why Do these Experiments Matter?

Deep Learning and Active Perception are inherently incompatible
"Active vision breaks deep learning"  - Yann LeCun, AFOSR Workshop on the Future of Machine 

Learning, Arlington, VA, May 17-19, 2017

Active Perception adds an inductive component to data acquisition. 
It is essentially the way to complete inductive reasoning actions.

Inductive reasoning takes specific information (premises) and makes a broader 
generalization (conclusion) that is considered probable. The only way to know is to 
test the conclusion; a passive sensing strategy could only do this by accident. 

Passive sensing thus impedes the use of any form of inductive reasoning
(e.g., inductive generalization, Bayesian inference, analogical reasoning, prediction)

Our experiments attempt to discover exactly what humans hypothesize while 
performing a complex visuo-spatial task and how they go about testing their 
hypotheses



Why Do these Experiments Matter?....cont'd

• There are limits to 
“This is a world where massive amounts of data and applied mathematics replace every other tool that might be brought to bear. Out with 
every theory of human behavior, from linguistics to sociology. Forget taxonomy, ontology, and psychology. Who knows why people do what 
they do? The point is they do it, and we can track and measure it with unprecedented fidelity. With enough data, the numbers speak for 
themselves.”

- C. Anderson,The End of Theory: Will the Data Deluge Makes the Scientific Method Obsolete? (WIRED 2008)

Our experiments tests this. The domain space is far too large to 
think it can be sensibly sampled for training sets.

• Provide insight into different strategies (cognitive programs)

• Appears that subjects decide based on individual cases – they choose simple   
strategies for simple cases and more complex ones for difficult cases, 
just as the original reason for problem re-framing would require

• This supports our main hypothesis as the strategy for creating tractable 
solutions to difficult tasks



PART 2:

Start with a Cognitive Program
For each visual sub-program

A1 - initiate and terminate program

A2 - monitor program progress
(objective function gives target)

A3 - modulate errant program

A4 - re-start failures (re-plan)

A5 - terminate and move to next program

Time (ms.)
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The fovea, and specifically its foveola, has 
the highest density of cones, it should always 
be placed at the location of maximum interest.
Let the gaze position be (x, y) in retinal coordinates 
and the centroid of target S be (xS, yS).  
The closer the point of gaze - or the center of the 
foveola - is to the target centroid, the more retinal 
cones will fall within the target, so a controller will 
seek to minimize the distance between these two 
points with the following objective,

min
(𝑥,𝑦)

(𝑥𝑆, 𝑦𝑆) − (𝑥, 𝑦)

The control signal for the fixation mechanism 
would be (𝛿𝑥, 𝛿𝑦), the change from the current (𝑥, 𝑦).

Tsotsos, J.K., Abid, O., Kotseruba, I., Solbach, M. On the Control of 
Attentional Processes  (submitted)



Self-Assessment

• Seek to test: General purpose intelligent systems are not constructed as a large 
collection of uni-taskers.  Although we seem to be able to build any uni-tasker we can 
think of (chess, GO, Starcraft...), we still need to discover how to build one system 
that can do all of it. Our claim is that general purpose intelligence is due to a single 
system that is tuned and configured differently for each required situation, and 
performs differently for each situation, from near immediate and perfect responses to 
extremely slow and error-prone responses. The key to this approach is a deep 
understanding of the nature of intelligent behavior.

• Our focus is on vision and limited visual behavior
• Latest experimental literature reaches similar conclusion
• Major progress on understanding nature of vision (saliency, active 3D observers, 

attention mechanisms, fixation control, visual hierarchy details)
• Quantitative arguments for why attention and task executive control are necessary
• Evidence for role and character of Cognitive Programs accumulating
• New learning strategy being incubated: Learning by Composition and Exploration



List of Publications, Awards, Honors, etc.
Attributed to the Grant

Awards
1st Prize: Best Computer Vision Poster, International Conference on Predictive Vision, Toronto,  June 10 - 13, 2019

Wloka, C., Kunic, T., Kotseruba, I, Tsotsos, J.K., SMILER: An Easy and Consistent Way to Compute Saliency Maps
Calden Wloka, Best Doctoral Dissertation Award, 2019, CIPPRS (Canadian Image Processing and Pattern Recognition Society)

Full Papers in Refereed Journals
Mehrani, P, Mouraviev, A., Tsotsos, J.K. (2020). Multiplicative modulations enhance diversity of hue-selective cells, Scientific

Reports 10 (1), 1-15.
Tsotsos, J. K., Kotseruba, I., & Wloka, C. (2019). Rapid visual categorization is not guided by early salience-based selection. PloS

one, 14(10), e0224306.
Yoo, S. A., Tsotsos, J. K., & Fallah, M. (2019). Feed-forward visual processing suffices for coarse localization but fine-grained

localization in an attention-demanding context needs feedback processing. PloS one, 14(9), e0223166.
Tsotsos, J.K., Attention: The Messy Reality, Yale Journal of Biology and Medicine, Special Issue on Attention, March 2019
Rasouli, A., Tsotsos, J.K. (2019). Autonomous vehicles that interact with pedestrians: A survey of theory and practice, IEEE

Trans. on Intelligent Transportation Systems, p1 -19 , 15 March, DOI: 10.1109/TITS.2019.2901817
Rosenfeld, A., Tsotsos, J.K.. (2020). Incremental Learning Through Deep Adaptation, IEEE Transactions on Pattern Analysis and

Machine Intelligence, p. 1-13, doi: 10.1109/TPAMI.2018.2884462; March, Vol 42, No3, p651-663.

Full Papers in Refereed Conference Proceedings
Kotseruba, I., Rasouli, A., Tsotsos, J.K. (2020). Do They Want to Cross? Understanding Pedestrian Intention for Behavior

Prediction, IEEE Intelligent Vehicles Symposium, June 23-26, Las Vegas, NV, USA
Tsotsos, J., Kotseruba, I., Andreopoulos, A., & Wu, Y. (2019). Why Does Data-Driven Beat Theory-Driven Computer Vision?. In

Proc. of the IEEE International Conference on Computer Vision Workshops, Oct. 28, 2019, Seoul, Korea.
Rasouli, A., Kotseruba, I., Kunic, T., Tsotsos, J.K.. (2019). PIE: A Large-Scale Dataset and Models for Pedestrian Intention

Estimation and Trajectory Prediction, Int. Conf. on Computer Vision,, Oct. 29 - Nov 1, Seoul, Korea.
Kotseruba, I., Wloka, C., Rasouli, A., Tsotsos, J.K., (2019). Do Saliency Models Detect Odd-One-Out Targets? New Datasets and

Evaluations, British Machine Vision Conference.
Raosuli, A., Kotseruba, I., Tsotsos, J.K. (2019). Pedestrian Action Anticipation using Contextual Feature Fusion in Stacked RNNs,

British Machine Vision Conference.
Rosenfeld, A., Tsotsos, J.K., (2019). Intriguing Properties of Randomly Weighted Networks: Generalizing While Learning Next to

Nothing, Canadian Conference on Computer and Robot Vision.


