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Learning in Large-scale Models of Biological Cognition
Chris Eliasmith, University of Waterloo

Objective: Adaptive neural cognition
• Develop and test functional models of hippocampus 

for working and long-term memory consolidation
• Develop and test functional models of basal ganglia 

for hierarchical reinforcement learning (HRL)
• Integrate these models within a large-scale neural 

model of the brain (Spaun)

Approach: Learning in large spiking nets
• NEF for neural dynamics and non-linear compute 
• SPA for high-D cognitive repns and action selection
• Various NEF/SPA methods for online learning in 

spiking networks: hPES, voja, etc.

DoD Benefits:
• Human-like cognitive behaviour for more natural 

artificial collaborators
• Continuous adaptive control systems

Progress:
• Extensions to world’s largest functional brain model 

(Spaun)
• Initial HRL and hippocampal stand-alone systems

Spaun depicted A) anatomically and 
B) functionally.

Progress (cont):
• Large-scale spiking model of working, 

long-term and episodic memory
• New neural representation of metric 

spaces (Spatial Semantic Pointers), state-
of-the-art for policy learning

• State-of-the-art RNN (Legendre Memory 
Unit) for temporal memory, from 
hippocampal model
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List of Project Goals

1. Extend models of learning and representation in the hippocampus, known 
to be central to episodic and working memory function

2. Extend models of learning in basal ganglia and related forebrain 
structures, known to be involved in model-based and hierarchical 
reinforcement learning (HRL)

3. Integrate these approaches in a large-scale model of the brain, and 
examine low-level biological interventions on human cognition

4. Construct biologically plausible models of the consolidation of information 
to long-term memory and its use

5. Model how the brain learns complex cognitive tasks using reinforcement 
learning and related techniques
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Progress Towards Goals

1. Unifying model of working and long-term memory 
(Gosmann)

2. Legendre Memory Units (LMUs) for ML and neuro 
temporal learning (Voelker, Dejong, Chilkuri) 

3. SSPs and grid cells for accurate continuous 
representation (Komer, Dumont)

4. Successor repn using SSPs for A2C RL (Dumont)
5. Complex single neuron models in Spaun 2.0 (Duggins)
6. Adaptive filtering using LMU repns (Stoeckel, Nat)
7. Spatial Semantic Pointers (SPPs) (Komer, Voelker, 

Stewart) [last report]
8. Delay Networks (DNs) (Voelker) [last report]
9. …+8
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CUE (Context unified encoding)

• “A unified spiking neuron model of short-
term and long-term memory” (Psych Rev, 2020)

• Self-contained 
(intrinsic control)

• Free recall, serial
recall

• Rapid episodic 
learning

• Hebb effect
• Spiking neurons



AML Learning Rule

• Association matrix learning (AML)

• Derived from PES, but doesn’t suffer from 
catastrophic forgetting

• Also biologically plausible (e.g. 
hippocampal rapid learning)



AML vs PES Rapid Learning



Neural support

• Consistent with
human recordings
from hippocampus
during association
learning



Overall CUE model

• Three free recall
variations

• Better match than
past models over
this variety

• Explains neural 
similarity as well
(not shown)



Continuous Time Processing
• Legendre Memory Units (LMUs)

• Optimal temporal
compression

• 106x more accurate 
while compressing 104x 
more data than LSTMs

• Time cells (hippo)
• New proposal ff-LMU

• Purely feedforward training (recurrent 
inference)

• 11-60x faster training than LSTMs; scales like 
ff-net (e.g. transformers)



ML Results Summary

• Beating state of the art on benchmarks for 
RNNs
• psMNIST
• QQP

• Parameter efficient
• First transformer to beat LMU on QQP uses 

50,000x more parameters
• 36-1000x fewer parameters than LSTMs on 4 

tested datasets (with higher accuracy)



Neuro Results Summary

• Captures known violation of the scalar 
property (not captured by past models)

• Matches Wang et al data

(with DeJong et al.)

Neural Responses



Spatial Semantic Pointers

• Semantic pointers represent standard 
discrete structures (lists, trees, etc.)

• SSPs allow recurrent convolutions to have 
fractional powers

• Compute fractional k in Fourier space



Spatial Semantic Pointers

• Represent continuous space (Clifford torus)

• Bind 
objects at locations





Grid Cells

• We found a method to choose X, Y to give 
grid cells

• And combine them to get place cells (with 
standard NEF decoders)

SSP Grid cells Place cells



Hexagonal SSPs

• They are better on a wide variety of tasks

Accuracy for representing locations Arbitrary ML problems



Lots more…
• Generalizes better outside of the trained 

space than other repns
• Has higher capacity than other repns
• Works well with RL (fast convergence)
• Built a full location memory system with 

navigation – one-shot/episodic learning
• PhD thesis



Conclusion
• Exploring new hippocampus inspired 

representations for both ML and psych 
models

• Specifically,
– Improved spatial representations (critical to 

hippocampus)
– Improved continuous temporal representation
– Improved integration of long-term and WM

• Integrated system with short term episodic 
memory
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