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Introduction

Deconvolution

Consider general problem
b=Ax+n
where
e b is known vector (measured data)
@ x is unknown vector (want to find this)

o A s large, usually ill-conditioned matrix
(may be known or unknown)

@ 71 is unknown vector (noise)
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Examples with this general model: b = Ax + n

@ Spatially invariant deconvolution

e x is unknown, true image
o Ax is convolution, where A is known (defined by PSF)
e b is observed, blurred, noisy image

@ Spatially variant blurs

e same as above, except
o need mathematical model of Ax (blurring operation)

@ Multi-Frame problems

b; A,
b=| : |, A=
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Basics of Regularization: SVD Analysis
Suppose A = UXV' and b = Ax e + 17 = birue + 1.

Naive inverse solution, Xiny = A~!b =VXE~1U"b

n T n T n T
u; b u; btrue u; 7
Xiny = E Vi = E - Vit E Vi
- Oj - i : Oj
i=1 i=1 i=1
X true error
The goal is to balance:
N " bt
@ reconstructing "good” SVD components: L2 (large o))
agj
u'n
@ avoid reconstructing "bad" SVD components : (small o)
agij

One approach: TSVD:
k

T

B u/b

Xtsvd = o Vi
i

i=1
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SVD Filter-based Regularization

The TSVD idea can be generalized:

o u;b 1 for “I !
i or “large” o}

Xalt = E i——V; where P N .
filt — i o ¢i { 0 for “small” o;
=

1
Examples:

o TSVD. ¢;—{ 1 i=1,2,... .k

0 i=k+1,...,n
We must choose regularization parameter k.

o2

@ Tikh Wiener: ¢; = :
ikhonov/Wiener: ¢ P

We must choose regularization parameter «

@ Exponential: ¢; =1 — e 0i/a

We must choose regularization parameter «
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Filtering and Variational Regularization

@ Tikhonov filtering is often written in variational form:

Ll

2
min {|[Ax — b3 + &?||x||3} or min
X X

2

@ Tikhonov filtering can be generalized to:

2
min {||Ax — b[3 + o®|[Lx||3} or min

o [o]

where L can be, e.g., a differentiation operator.

2
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Introduction

Remarks

We can use SVD filtering if we assume:

@ Spatially invariant PSFs and periodic boundary conditions.
@ The blur is separable.

We may need iterative methods when:

@ Blur is spatially variant.

@ Important information is near boundary of field of view.

@ Additional constraints need to be imposed on solution.
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lterative Methods

Some approaches to using iterative methods:
@ Apply iterative method to variational form of regularization:

min b — Ax|2 + o?||Lx|3

© Apply iterative method directly to
min ||b — Ax||2
X

enforce regularization by stopping iteration early.

© Combine the two approaches = Hybrid Method
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Iterative Regularization

o Consider the inverse problem: b= Ax-+1n

@ Apply an iterative method to:
min ||b — Ax||2
X

enforce regularization by stopping iteration early.

@ Why should this work? Does it always work?
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Iterative Methods

Iterative Regularization

Need to show solution at each iteration satisfies:

MO Y SL AN

i=1 i

where the filter factors satisfy:

k 1 for “large” O;
o) ~ { ’

0 for “small” o

@ More filtering is done when k is small.

@ Less filtering when k is large.

Simple Example: Landweber (gradient descent)
o lteration:  x(kt1D) = x(k) 4 +AT <b — Ax(k))

o SVD filter: ¢\ =1 (1 — ro?)kH1
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Iterative Regularization

Remarks:

@ Landweber is easy to analyze, but is very slow.

@ Conjugate gradient methods:

e Much faster to converge
e But much harder to analyze
o Example: LSQR
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Conjugate Gradient and Hybrid Methods

Golub-Kahan Bidiagonalization

LSQR is based on the Golub-Kahan bidiagonalization (GKB)
Given m x n A, vector b, k-th GKB iteration computes

ATW, = YB] +Vii1Yk+1€f 41
AY W,By,

where
e W, and Y, have orthonormal columns

e By is bidiagonal:
M
Bo Yo
By = ' .
Bk Yk
Br+1
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GKB Properties
Using GKB iterates, can compute approximate solution x(k)

min HAx — bH2 = m|n IBgx — ﬁele
xeR(Y

where 8 = ||bl|2, and x(k) = Y,x.

Important property:
Singular values of By approximate large singular values of A
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GKB Properties

Using GKB iterates, can compute approximate solution x(k)

mln HAx — bH2 = mln IBxx — ﬂele
x€R(Y

where 3 = ||b|2, and x(K) = Y, x.

Important property:
Singular values of By approximate large singular values of A

(A) and 0,8, )

singular values,o,
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GKB Properties

Using GKB iterates, can compute approximate solution x(k)
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Conjugate Gradient and Hybrid Methods

GKB Properties

Using GKB iterates, can compute approximate solution x(k)

where 3 = ||b|2, and x(K) = Y, x.

Important property:

mln
xeR(Y

J1Ax = b||3 = min |Bxx — e 3

Singular values of By approximate

singular values o (A) and o (B..)

.
5

107

1

oAy B,lio(A)

large singular values of A
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LSQR and lterative Regularization

This property implies:

o Early iterations x(k) in a subspace that approximates large singular
components of A.

@ Thus for k < n, x() is a regularized solution.
o Eventually x(¥) — xinv = X¢rue + error (bad)

o lterative regularization = determine good stopping iteration.
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GKB-based Hybrid Methods

Hybrid approach:
@ Enforce regularization at each GKB iteration
@ Regularize projected least squares problem involving By

mﬁin {IBkk — Be1||3 + 042”’?”%}

@ Can be done very cheaply
Some references:

O’Leary and Simmons, SISSC, 1981.

Bjorck, BIT 1988.

Bjorck, Grimme, and Van Dooren, BIT, 1994,
Larsen, PhD Thesis, 1998.

Hanke, BIT 2001.

Kilmer and O'Leary, SIMAX, 2001.

Kilmer, Hansen, Espafiol, SISC 2007.
Hné&tynkova, Plesinger and Strako$, BIT 2009
Chung, N, O'Leary, ETNA 2007
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Hybrid Methods
Advantages of hybrid approach:

@ Powerful regularization parameter choice methods can be
implemented efficiently on the projected problem.

@ Semi-convergence avoided, less sensitive to stopping iteration.

@ Our implementation: HyBR

o Can automatically choose regularization parameters (GCV)
e Can automatically suggest stopping iteration
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Arnoldi-based Hybrid Methods

@ Instead of Golub-Kahan bidiagonalization (LSQR),
@ Use Arnoldi Hessenberg reduction (GMRES)

Calvetti, Morigi, Riechel, Sgallari, JCAM, 2000.
Hochstenback, Reichel, J. Comput. Appl. Math., 2010.
Reichel, Sgallari, Ye, Appl. Numer. Math, 2012.

@ Arnoldi advantages:
o Easier to implement for general Tikhonov regularization:

Xm = arg min b — Ax|3 + ALx[3

Gazzola, Novati, 2013.
o Flexible Krylov subspaces can be used to solve

Xm = arg min [|b — Ax[|3 + Al|Lx[

More on this later.
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More General Regularization Methods

Consider the general problem:
min [|b — Ax[|3 + AR(x)
X

where

o R(x) = IxI5=> Ixl°, p=1

(Total Variation)

o R() = /(02 + (D

1
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Many Previous Works ...
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SIAM J. Imaging Sciences, 4(1):1-39, 2011.

J.M. Bioucas-Dias and M.A.T. Figueiredo.
A new TwlIST: two step iterative shrinkage/thresholding algorithms for image restoration.
IEEE Trans. Image Proc.,, 16 (2007), pp. 2992-3004.

ﬁ S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinvesky.
An interior-point method for large-scale ¢1-regularized lest squares.
IEEE J. Selected Topics in Image Processing, 1 (2007), pp. 606-617.

J.P. Oliveira, J.M. Bioucas-Dias, M.A.T. Figueiredo.
Adaptive total vatiation image deblurring: A majorization-minimization approach.
Signal Processing, 89 (2009), pp. 1683-1693.

P. Rodriguez and B. Wohlberg.

An iteratively reweighted norm algorithm for total variation regularization.

In Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers
(ACSSC), 2006.

[3 S.J. Wright, R.D. Nowak, M.A.T. Figueiredo.
Sparse Reconstruction by Separable Approximation.
IEEE Transactions on Signal Processing, Vol. 57 No. 7 (2009), pp. 2479-2493.
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Iteratively Reweighted Norm Approach (wohiberg, Rodriguez)

@ lteratively construct L, so that ||L,x||3 ~ R(x), and compute
X = argmin [b — Ax|3 + A L3

@ For example, R(x) = ||x]1

=diag(l ./ sqrt(abs(xm_1)))

1
L,, = diag (
V |Xm—1|>
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Arnoldi-based Hybrid Methods
Our approach: Similar to Wholberg and Rodriguez, combined with Arnoldi:

e lIteratively construct Ly, so that ||L,x|3 ~ R(x), and compute
X = arg min b — Ax||3 + A\m||Lmx]|3

using Arnoldi-based hybrid method.

e This is equivalent to flexible (variable) preconditioning:

o . min b — A3 + A%
min [[b—AL ' Lox[3+Am|Lmx[3 & k
A=AL! %=L,x

@ Here, purpose of preconditioning:

e not to improve condition number of the iteration matrix
e instead, ensure iteration vector lies in “correct” subspace

@ Use “flexible” Arnoldi-based hybrid method (similar to flexible GMRES).



Sparsity Example
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Sparsity Example
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Conjugate Gradient and Hybrid Methods

Sparsitv Examble
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Conjugate Gradient and Hybrid Methods

Sparsitv Examble
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Conjugate Gradient and Hybrid Methods

Sparsitv Examble

Stopping lteration: 23 A =1.1976 - 104,
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Conjugate Gradient and Hybrid Methods

Sparsitv Examble

Stopping lteration: 23 A =1.1976 - 104,
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Conjugate Gradient and Hybrid Methods

Sparsitv Examble

Stopping lteration: 23 A =1.1976 - 104,
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Conjugate Gradient and Hybrid Methods

Comparison with other method: Sparse Reconstructions

| Method H Relative Error [ Iterations [ Total Time
SpaRSA 2.2365 - 102 94 24.76
NESTA 1.7800- 1072 248 306.17
TwIST 1.1089 - 1072 104 28.02
11_1s 2.2257 -10 2 208 683.55
IRN-BPDN 2.2294 102 103 35.72
Flexi-AT 1.1345 102 23 2.44
SpaRSA: Wright, Nowak, Figueiredo, 2007
NESTA: Becker, Bobin, Candes, 2011
TwliST: Bioucas-Dias, Figueiredo, 2009
11_ls: Kim, Koh, Lustig, Boyd, Gorinvesky, 2007
IRN-BPDN:  Rodriguez, Wohlberg, 2009
Flexi-AT: Our method
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Restarting Strategy

For sparse reconstruction, L, is diagonal = it is easy to invert.

In the Total Variation case,
Lm = Smth

is complicated, and not easy to invert.

If Ly, is not easy to invert, cost per iteration increases dramatically.

So, we incorporate a restart strategy:

e Restart when discrepancy principle is satisfied
(residual reaches noise level).

o Apply L, at each restart.

e Can also enforce projection constraints with each restart:

xp" = P(x«)
1
where, e.g., P(xx) = argmin §||xk —vy|3, st.y>0and |y|i =v
y
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Comparison with other method: Sparse Reconstructions

] Method | Relative Error [ Iterations | Total Time |
SpaRSA 2.2365 - 102 94 24.76
NESTA 1.7800 - 10~ 248 306.17
TwiIST 1.1089 - 102 104 28.02

11 1s 2.2257-1072 298 683.55
IRN-BPDN 2.2294 1077 103 35.72
Flexi-AT 1.1345-10 ° 23 2.44
Flexi-AT (NN) |[ 3.7530-107° 60 6.25
AT: Standard Tikhonov regularization
SpaRSA: Wright, Nowak, Figueiredo, 2007
NESTA: Becker, Bobin, Candes, 2011
TwliST: Bioucas-Dias, Figueiredo, 2009
11_1s: Kim, Koh, Lustig, Boyd, Gorinvesky, 2007
IRN-BPDN: Rodriguez, Wohlberg, 2009
Flexi-AT: Our method
Flexi-AT (NN):  Our method with nonnegative projection restart

AFOSR Review, November 18, 2014 James Nagy



Concluding Remarks

@ Hybrid iterative solvers can be effective.
o Can use sparse constraint (|| - ||1) or TV regularization.
e Requires flexible Krylov subspace framework.
e Can incorporate regularization parameter choice methods and
stopping criteria.
o Restarting may be needed, but can be useful when
enforcing projection constraints (e.g., nonnegativity).

@ Current work:

o Adapt approach to Calef's iteratively reweighted blind deconvolution.
o Handles outliers (e.g., glints) in measure data.
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