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Introduction to Multiple Target Tracking 

Data Association: Given a set of sensor reports or detections of a collection 
of objects, determine which reports emanate from which objects and which are 
unrelated. 
 
Nonlinear Estimation and Fusion: Given a sequence of reports 
emanating from the same object, use fusion and estimation techniques to 
improve the estimate of the state. 
 
Multiple target tracking methods divide into single and multiple frame methods.  
The most successful of the multiple frame methods are Multiple Hypothesis 
Tracking (MHT) and Multiple Frame Assignments (MFA).  MFA is an 
optimization based MHT that formulates the data association problem as a 
multidimensional assignment problem. 
 
The strength of MHT/MFA derives from its ability to change past decisions or, 
equivalently, to delay difficult decisions until more information is available.  
 
A goal of this research program has been to develop advanced algorithms 
in support of the development of a MFA Space Tracker (MFAST) for space 
surveillance and to use it to resolve Uncorrelated Tracks (UCTs).   
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Basic Research [1/2] 

Three Optimization Based Formulations of the Data Association Problem in our 
Multiple Hypothesis Tracker (MHT) called MFAST 

p  Current: Multi-Dimensional Assignment (MDA) problem formulation the data association 
problem in MHT. 

p  Improved: multi-arc, multi-assign, multi-dimensional assignment (M3DA) Problem formulation 
of MHT.  (Improves on MDA formulation.) 

p  New: Generalized MHT for UCT processing, breakups, clusters, and catalog maintenance. 
p  Uncertainty in the Association Process  

n  The problem is to identify orbit segments with relatively pure data associations (say > 95%) in support of 
object identification.   

n  Traditional methods include K-Best or Markov Chain Monte Carlo (MCMC). 
n  New: Correspondence method improves quality of K-Best or MCMC by an order of magnitude in 

fractions of a second and identifies orbit segments that are relatively pure. 

Sensor Resolution: Merged Measurement Algorithms 
p  New: System/network level algorithm determines likely candidates; multi-assignment in M3DA 

facilitates assignments.  
p  At the sensor level, 

n  Decompose pixel-clusters consistent with established tracks.  
n  Enhanced Resolution Algorithm based on GMRES algorithm followed by EM algorithm to generate 

measurements. 

Cluster Tracking (In Progress) 
p  Clustering methods for LEO breakups and GEO clusters 
p  Continuous transition from cluster tracking to individual tracking object tracking 
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Basic Research [2/2] 

Complexity Reduction 
p  Dual Pane Sliding Window implementation of MHT 
p  Gating algorithms remove highly unlikely strings of reports prior to association. Examples include 

dynamic, multi-frame, filter prediction, and likelihood ratio gates.  
p  Track hypothesis pruning is based on K-Best or Arc Conditioning. 
p  New: Snippets (EO tracks), which are sets of angle and angle rates derived from angle only data, 

are used in gating, but not estimation.  Reduces complexity from O(N^4) to O(N^2.3). 
 

Treatment of Biases at the System Level 
p  JABE Algorithm for track to track biases is based on branch and bound and A*-search. (Appropriate 

for matching EO orbits and radar orbits.) 
p  Consider Analysis and Schmidt Filter treat residual biases between calibrations. 
p  Bias estimation. 

 
Uncertainty Quantification (Initiated under an AFOSR STTR) 

p  New Nonlinear Filter: The GVM filter and comparisons to UKF,  EKF, and Gaussian Sums. 
p  New: Transformation of uncertainty necessary to support mission areas: conjunction assessments, 

data association, anomaly detection, sensor tasking and scheduling 
p  New Orbital Propagator: GL-IRK methods for propagation of orbits and their uncertainty 

 
New: Anomaly detection and maneuver reconstruction. 
New: Metrics for uncertainty realism 
UCTs processing using radar and EO sensors 
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PROPAGATION OF UNCERTAINTY  
IN THE STATE OF AN OBJECT 
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Overview 

We have implemented some existing algorithms and developed new ones for the 
propagation of uncertainty through nonlinear transformations and in time, e.g.,  
n  Unscented transform and filter 
n  Extended Kalman filter 
n  Particle filter 
n  Gauss von Mises filter 
n  Mixtures of Gaussians or GVMs 

in different coordinate systems, e.g., 
n  Cartesian 
n  Orbital elements (e.g., Equinoctial Elements) 

in support of several space missions, e.g., 
n  conjunction assessments, 
n  sensor resource management, 
n  data association for orbit or catalogue maintence, 
n  anomaly detection. 
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Comparison of the GVM, EKF, UKF,  
and Gaussian Sum Filters 
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Comparison of the GVM filter with the EKF and UKF 
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Comparison of the GVM filter with the EKF and UKF 

Distribution Statement A: Approved for public release. Distribution is unlimited.  © 2014 Numerica Corporation 
 

Pg 10 



UNCLASSIFIED 

UNCLASSIFIED 

Comparison of the GVM filter with the EKF and UKF 
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Comparison of the GVM filter with the EKF and UKF 
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Comparison of the GVM filter with the EKF and UKF 
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The Gauss von Mises PDF and Filter 

The Gauss von Mises (GVM) PDF was developed specifically for orbital element 
spaces.  (One can transform the GVM to a Cartesian space using a Gaussian 
sum representation.) 
 

n  Provides both covariance and uncertainty realism by modeling higher-order 
cumulants (e.g., skewness and kurtosis) beyond a state and covariance. 

n  Reduces to a Gaussian for a subset of the parameter space. 
n  The Gauss von Mises (GVM) filter provides improved covariance and 

uncertainty realism at no additional computational cost compared to 
traditional methods for uncertainty propagation. 

n  The GVM maintains uncertainty realism up to eight (8) times longer than the 
UKF/EKF. 

n  Can be extended to a mixture filter, to provide improved accuracy in extreme 
cases at over a 95% reduced cost compared to Gaussian mixtures. 

n  Recent Reference:  J. T. Horwood and A. B. Poore, “Gauss von Mises 
distribution for improved uncertainty realism in space situational awareness,” 
SIAM Journal of Uncertainty Quantification, vol. 2, pp. 276-304, 2014. 
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Orbit and Uncertainty Propagation 
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Salient Features of Numerica’s 
Implicit Runge-Kutta (IRK) Propagator 

n  The Method 
p  Based on collocation methods using any set of orthogonal polynomials 
p  Settled on Gauss Legendre orthogonal polynomials for the reasons below. 

n  Numerical properties 
p  A-stable: can be applied to problems with multiple time scales 
p  Super-convergent: no method converges faster 
p  Parallelizable: can exploit advanced computing architectures 
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Implicit Runge-Kutta (IRK) Propagator 

How it works:   
User specifies the desired accuracy (relative and absolute errors) of the 
solution per time step.  Then, the algorithm adaptively selects  

p  Stepsizes up to 0.8 of an orbit (from a convergence proof), 
p  Number of stages (collocation points/nodes), 
p  Convergence criteria for the iterative solution of the system of nonlinear equations 

(relative and absolute errors), 
p  Order of the gravity model. 

to achieve (reliability and) the prescribed accuracy in the solution at a 
minimum computational cost.   
 
Why it works for astrodynamics: 

p  Convergence proof has been established for the system of nonlinear equations solved 
each step for astrodynamics.  Domain of contraction is almost “global”. 

p  Good initial approximations to solution provided by classical astrodynamics, e.g., 
Keplerian dynamics or by nearby solutions in the case of an ensemble propagation. 
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Ensemble Propagation 
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Traditional algorithms propagate each orbit, individually, within an ensemble 
of states. The GL-IRK method facilitates the propagation of nearby orbits 
together, thereby reducing the cost of uncertainty propagation. 

An efficiency breakthrough: propagation of a covariance costs about the 
same as that of one to two orbit propagations using existing methods such as 

Dormand-Prince 8(7).  

Paradigm(Shi+(

High(cost( Low(cost(
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Some Computational Results 

n  Even before potential parallelization, the new GL-IRK based propagator 
significantly reduces the computational cost of orbit and uncertainty propagation 
by 70-90% depending on the regimes of space. 

Savings based on runtime comparison to Dormand-Prince 8(7) from netlib.org for the propagation of 13 sigma points.  
See Aristoff, Horwood & Poore, J. Celestial Mech. and Dynamical Astronomy (2014) for further details. 
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Moreover, the propagator worked out-of-the-box on live UCT data.  
No tuning was needed! 
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Data Association for a Generalized MHT 
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Characteristics of SSA Data Association Problem 

The central problem in multi-object tracking is the data association 
problem of partitioning the sensor reports into tracks and unrelated reports.  
 
n  For space objects, we have good dynamical models, but we need a better 

characterization of the uncertainty in the model dynamics.   
n  Sparsity of the data (detections) presents major challenges.  
n  Sensor reports have poorly characterized uncertainties.  
n  In a multi-sensor environment, biases tend to be a major issue but these 

may be hidden somewhat in older sensors.   
n  UCTs are detected when sensors are tasked to view catalogued objects. 

n  Maneuvers can undermine the dynamical models.  
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Desired Features of a Generalized MHT 

n  A frameless MHT that can efficiently process days and weeks of sensor 
reports to determine good orbits from UCTs. 

n  The ability to incorporate frames as desired. 
n  A cluster tracker that can spawn reliable new orbits as they separate from 

the cluster in support of LEO breakups and GEO clusters.   (NASA 
requires the individual objects as soon as available for conjunction 
assessments.) 

n  Uncertainty quantification of the association process. 
n  New types of assignments such as merges, spawns, and cluster 

assignments not present in the current MFA formulation. 
n  Provide a framework for a joint association and bias estimation (JABE). 

n  Preserve the framework for current MDA based association algorithms, 
i.e., be backward compatible with current MHT association algorithms.  
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The Group Assignment Problem 
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Group Assignment Problem (GAP)

Minimize  cijxij
( i, j )∈A
∑

Subject to (1)  mik xij ≤1
( i, j )∈A
∑ , (k ∈K ),

                 (2)  njl xij ≤1
( i, j )∈A
∑ , (l ∈L),

                 (3)  xij ∈ 0,1{ }. 

where the indicator functions are defined by
                 (4)  mik = 1  if  k ∈Ki ,  0 otherwise;
                 (5)  njl  = 1  if  l ∈Lj ,   0 otherwise;
Ki{ }  is a set covering of K;
Lj{ }  is a set covering of L.

The group assignment problem is an 
assignment formulation of a generalized 
MHT capable of treating traditional MHT, 
cluster tracking, transition from cluster to 
MHT tracking, genealogy, and a host of new 
measurement types, e.g., spawn, merge, 
cluster assignments.    

GA subsumes the MDA.   

Variations are fundamental to sensor and 
communications resource management 
either as a deterministic problem or as a 
rollout policy for a stochastic dynamic 
programming approach. 
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UCTS: SOME  
COMPUTATIONAL FINDINGS 
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AFOSR Sponsored Research Program  
and AF STTR/SBIRs 

AFOSR sponsored research is to develop longer term SSA capabilities; 
however, we needed an environment  
n  to evaluate new algorithms, and 
n  to demonstrate capability. 
 
With AF SBIR and AFOSR STTR support, we have over the last 3 years 
developed a Python tracker with C++ components called Multiple Frame 
Assignment Space Tracker (MFAST) 
 
Thanks to a recent AF Phase II SBIR (Dr. Alok Das, WPAFB), MFAST is being 
transitioned to Dahlgren to process live UCT data. 
n  MFAST is now fully automated and processing real EO and radar UCT data 

at the SSAL to produce new candidate orbits.  Just last week, MFAST 
generated new UCT orbits that that were then sent to Dahlgren for 
verification.   

n  MFAST will be updated with new or improved capabilities as they mature. 
n  MFAST is being re-written in C++ for delivery to Dahlgren in April, 2015. 
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Comments on Simulated and Real Data 

We have processed several data sets through MFAST and plan regression testing. 
n  2004 SSN (radar and optical) 
n  Ibex SST ModSim (GEO and mixed regimes) 
n  JMS NumVal  (ongoing) 
n  Historical breakups 
n  Live UCT data in the SSAL environment. 

Using 2004 SSN data as a baseline, we observe 
n  99% correctness for radar UCTs. 
n  95% correctness for frequently observed objects by EO sensors. 
n  Cross-tags are non-existent except for infrequently seen objects. 
 
For live UCT data,  
n  If you look only for GEO orbits (with the EO sensors), you will miss most of the orbits from whence 

the UCTs come. 
n  There are many HEO orbits seen by both radar and EO sensors.  One can correlate and fuse 

many of the common objects. JABE is particularly appropriate for this matching. 
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GENERAL CONCLUSIONS 
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Concluding Comments 

We have made much progress in developing future capabilities for MFAST to 
resolve UCTs using multi-sensor data.  
 
MFAST is now running in the SSAL and processing live UCT data to produce 
UCT orbits. 
 
A summary of the many algorithm components that are necessary for a future 
MFAST for space surveillance is provided on Slides 4-5.    
 
Future Challenges and Opportunities 
n  Treatment of (sensor and dynamic model) biases 
n  Covariance/Uncertainty realism of sensor reports 
n  Achievement of uncertainty realism in the state of RSOs. 
n  A generalized MHT for space surveillance needs.  The group assignment 

problem is designed to address this need.  
n  Sensor resolution issues 
n  Interactions with and support of the different mission areas.  
n  High performance computing  
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BACKUPS 
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Some Definitions 

LEO-1:  Low-Earth Orbits (Perigee < 500 km) are defined as RSOs with a 
Period < 225 minutes, perigee height < 500 km, and eccentricity < 0.25. 
 
LEO-2 :  Low-Earth Orbits (Perigee > 500 km) are defined as RSOs with a 
period < 225 minutes, perigee height > to 500 km, and eccentricity < 0.25. 
 
HEO:  Highly Elliptical Orbits are defined as all RSOs with 225 minutes < 
period  < 1300 minutes and eccentricity > 0.25. 
 
MEO:  Medium-Earth Orbits are defined as RSOs with 225  minutes < period  
<1300 minutes and eccentricity < 0.25. 
 
GEO:  Geosynchronous Earth Orbits are defined as RSOs with  
1300 minutes < period <1800 minutes, Inclination < 35 degrees, eccentricity 
< 0.25. 
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MANEUVER DETECTION  
AND RECONSTRUCTION 

Navraj Singh 
Navraj.Singh@Numerica.US 
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Maneuver Detection and Reconstruction 

Illustra(on	
  Courtesy	
  of	
  Dan	
  Scheeres,	
  University	
  of	
  Colorado,	
  Boulder	
  

Data/Track 
Association 

Impacted SSA Functions: 

UCT 
Resolution 

Space Catalog 
Maintenance 

Traditional methods 
 

•  Use multiple motion models  
•  Suited for continuous updates through maneuver 

Numerica’s method 
 

•  Can treat sparse scenarios with unseen maneuvers 
•  Reconstructs fuel-optimal maneuvers 
•  Uses efficient optimal control framework 
•  Exploits fuel-usage characteristics of orbital 

maneuvers to estimate maneuver probabilities 
•  Rigorously treats uncertainty in track states 
•  Can be incorporated within MHT framework 

Inclination  
Change 

Maneuver  

UCT 
(pre-maneuver) 

UCT 
(post-maneuver) 

Can we detect, reconstruct, and validate the  
unseen maneuver, given the two UCTs? 

sensor 

Example: inclination change detection 
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Goals, Assumptions, Approach, Key Findings 
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n  Goals: 
p  Compute fuel-optimal control cost and profile to connect disparate orbital states 

p  Account for uncertainties in the orbital states, and compute probability distribution of the optimal control cost 

p  Formulate hypothesis test for maneuver feasibility and UCT correlation based on fuel cost 

n  Key assumptions: 
p  Most orbital maneuvers are fuel-optimal 
p  Given a choice of different track association hypotheses, the one with the lowest fuel cost is the correct one 

n  Approach: To achieve accurate and robust maneuver detection and validation, we 
developed an optimal control framework that employs the total velocity increment ΔV as a 
cost functional to determine if a realistic, feasible maneuver possibly connects two broken 
tracks/UCTs 
p  Why ΔV: (1) It provides an accurate estimate of fuel cost (in comparison to other metrics such as energy), 2) it is 

catalogued for many satellites and maneuver types, and (3) We have overcome the issues related to numerical 
singularities presented by this cost functional 

n  Key findings: 
p  Uncertain boundary conditions can be accounted for via the Unscented Transform 

p  A hypothesis test for scoring association hypotheses based on maneuver probabilities can be formulated 

p  It is possible to reconstruct a maneuver and classify its type even if it is not seen directly 
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n  A truth object generates a pre-maneuver UCT (UCT A in frame 1 below) 

n  The object conducts a ΔV=4 m/s inclination change maneuver and generates a post-maneuver UCT (B in frame 2) 

n  Another UCT (C) in frame 2 belongs to a different truth object (true ΔV distance from UCT A is about 4.32 m/s) 

Example UCT Association Scenario 
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A B : True Association

C :A     False Association

Association decision:

ΔV distribution estimated 
for pair A->B

ΔV distribution estimated 
for pair A->C

is greater than

Hence, 
Pair (A à B) wins

Reconstructed maneuver 
profile distribution for

pair (A à B):

ΔV probability density estimates:
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Transitions 

MFAST to Dahlgren to process and resolve live UCTs 
 
Nonlinear filtering and estimation work to AFSC/A9 
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