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Freeform Optics

FREE-FORM LENSES ANS MIRRORS

Problems of design of lenses and mirrors for redirecting and redistribut-
ing energy have been solved usually under a priori assumption of rota-
tional/rectangular symmetry.

In many applications such as materials processing (welding, cutting, drilling),
energy concentrators, medicine, illumination, antennas, computing lithog-
raphy, laser weapons, optical data storage/imaging ... the assumption of
rotational/rectangular symmetry is overly restrictive and leads to optical
systems with low energy efficiency

Our goal:

Develop reliable and fast computational methods for design of
free-form lenses/mirrors without a priori symmetry assumptions!



Freeform Optics A free-form single
mirror ,

A free-form mirror. The mirror below transforms a sinusoidal shaped radi-
ation pattern from a point source into a uniform planar far-field distribution;
designed by V. Oliker; I/0O data provided by J. C. Minano, P. Benitez;




Freeform Optics Introduction

Design of free-form optics requires construction of maps with controlled
Jacobian between input and output bundles of rays in space.

Two basic approaches: 1. Numerical Optimization of an ad hoc merit
function(s); heuristic, designer-dependent, the solution is a local optimum

2. Direct methods: find a map with controlled Jacobian between given
input-output 2D regions in space realizable by an optical system

e (a) The SMS method; heuristic, no control of Jacobian; J. C. Minano,
P. Benitez et al.

e (b) Geometric and variational (mass transport) methods (solving PDE’s
of Monge-Ampere type)), V.l. Oliker with collaborators and students: L.
Caffarelli, S. Kochengin, T. Glimm, J. Rubinstein, G. Wolansky
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A (sample) refractor problem
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Problem: Determine R such that for given refraction indices ng, n1, the
incoming plane wave of cross-section 2 with intensity distribution I(z) is

transformed into a bundle of rays irradiating at a given T;; with prescribed
intensity distribution L(p).
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Philosophy of direct geometric methods:

1. Recognize special surfaces (i.e. quadric(s), Cartesian ovals,...) suit-
able for the problem (These usually solve the problem if one of the
given intensities is replaced by a measure concentrated at one point)

2. Approximate the given intensities by finite sums of Dirac masses and
describe classes of free-form admissible sub-/supersolutions as lower
and upper envelopes of such special surfaces (This defines admis-
sible convex/non-convex solutions, and often very useful Fermat-like
functionals!)

3. Solve the resulting problem, go to a denser sets of Dirac masses ap-
proximating the intensities and solve again. lterate.



Freeform Optics

Provably convergent computational methods for design

of free-form mirror/lenses:

(a) An iterative method based on a monotone variation of parameters
defining special surfaces has been developed by V. Oliker partly in
joint works with L. Caffarelli and S. Kochengin; This method is very
general and intuitive and the procedure is guaranteed to converge to
the true solution (in a given class a priori chosen by the user); Insuffi-
cient in problems requiring high resolution (slow when the number of
required special surfaces is of order 100 — 1012).

This approach is currently in wide use in the optics community.
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(b) A new approach is under development by V. Oliker (initially, partly with
T. Glimm). The numerical scheme is guaranteed to converge to the
true solution (in classes a priori chosen by the user); in principle, it
allows determination of tens of thousands of data points on each mir-
ror/lens (required for accuracy and high image resolution.)

MAIN CHALLENGES:

(i) Computational Efficiency: Problems of optimal transportation type
with 108 — 1012 constraints must be solved efficiently

(i) Many problems involving single refractive/reflective interfaces for inco-
herent output bundles of light rays lead to highly nonlinear cost function-
als; the computational complexity is increased (as compared with (i))
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We illustrate our new approach on the “Two-lens
problem” arizing in computer lithography

First, we state the Two-lens problem as a problem in PDE’s.
Second, we connect it with the optimal transport theory
Third, we describe the computational method

Our mathematical framework is applicable to many optics problems with
single or multiple reflectors/refractors.



Freeform Optics Two-lens System

Test design 2. A freeform two-lens system

A computer lithography problem

Irradiance distribution for mask
illumination

Is it possible to generate this pattern by
reflective or refractive optics?

“Ivsource
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Input: uniform rectangular distribution
with dimensions ~ 3mm x 6 mm

Input and out are collimated, propagate
in the same direction

John Hoffnagle 16 May 2008
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Problem setup and notation
no
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Problem: Determine R; and R, such that for given refraction indices
ng, ni, the incoming plane wave of cross-section 2 with intensity dis-
tribution I(x) is transformed into a plane wave irradiating at a given T}
with prescribed intensity distribution L(p).
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Some of the earlier (related) work on rotationally symmetric (RS) lenses:
B.R. Frieden ('65), J.L. Kreuzer ('69), PW. Rhodes & D.L. Shealy ('80), W.
Jiang, D.L. Shealy & J.C. Martin ('93), J. A. Hoffnagle & C.M. Jefferson
('00-05).

A two-lens RS system designed by Hoffnagle & Jefferson was fabricated
by QED Technologies ('03?). The authors received the 2003 Kingslake
Medal and Prize for this work.

Previous (most relevant) work on free-form lenses: H. Ries - J. Muschaweck,
2002 (no details); J. Rubinstein - G. Wolansky, 2007-2008 (single lens,

0 < n < 1), - Weighted least action + use of work by Oliker-Glimm;

V. Oliker, 2005 (two- and single lens, n > 1, 0 < n < 1),- Geometric
methods
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FROM OPTICS TO PDE

Assuming the geometrical optics approximation, the following three laws
are used to derive the equations for functions describing the lens surfaces:

e Shell’s (the refraction) law

e Conservation of Energy Along Infinitesimal Tubes of Rays

e Constancy of the Optical Path Length (OPL) (for coherent input
and output beams)
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Notations:
Optical path length (OPL): | = nz(x)+t(x)+n[d-w(P(x)]=const

Reduced OPL: B:=I-nd=n[z(x)-w(p)] \Yx-p)z+ [w(p)-z(x)]2

T = proi 720} T4
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Let (R, Ro) = (2(x), w(p)). Put M(2) := /1 + (1 — n?)|Vz|2.

The refraction law gives the refracted direction at the lens surface R:

w(x) =nk+ —nt M(Z(X))N(x).
V1+192()2
The refraction law and O PL = const give the refractor map:
BVz(x) = _
P(x) =x — Q=T
M (z(z))

The energy conservation law:
L(P(x))|J(P(x)| = I(x), (JIisthe Jacobian).
Due to constancy of the OPL, the second lens is given by

3 1
n2 — 1 M(z(m))] +2(@).

w(P(@)) = — [n +
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The PDE problem

For bounded planar regions 2, T C «, input intensity I, defined on 2, and
output intensity L, defined on T, find =z ¢ C2(2) N C1($2) such that, the
map

P(x) =z — ]\izz((j;) : 2 — T is onto,
and
Z —TLQ Z Z| — Z
L(P)det{M( ) ld+ (1 )Vz® Vz| — BHess(z) | o

M*(2)

This PDE is of Monge-Ampere type. Such equations are notoriously hard
to investigate theoretically and solve numerically.
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We were able to reduce this PDE problem to a variational problem and
establish that:

. Forn > 1 and 3 < O there are two classes of (weak) solutions for
the same data and these solutions can be constructed as lower and
upper envelopes of suitable hyperboloids of revolution. One class of
solutions always consists of two lenses whose active surfaces are,
respectively, concave and convex;

Il. The solutions in the second class give two lenses with active sur-
faces which may be neither convex nor concave.
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lll. For 0 < n < 1 and 3 > O there are two classes of solutions for
the same data and these solutions can be constructed as lower and
upper envelopes of suitable ellipsoids of revolution. One class of
solutions always consists of a lens one side of which is concave and

the other convex

IV. The solutions in the second class are lenses whose sides may be
neither convex nor concave.
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Theorem 1. Let 2, T C abe bounded domains, I € L1 (), L € L1(T),
I,L > 0,and [5I(x)dr = [ L(p)dp # 0. Assumen > 1 and 5 < O.
The problem

F(z,w) = /Tw(p)L(p)dp — /Qz(a:)[(ac)da: —— min on Adm 4
has a minimum (zminlconcave], wminlconvex]) which is of type A:
{Bn — c(z, p) {_571 — c(z, p)

n?—1 n?—1
The minimizer is unique on connected components of sptl (up to an addi-
tive constant). In addition,

z € Lip(Q), w € Lip(T), |Vz|,|Vw| < 1/1/n? — 1 and a.e. in

 BVe(@)
M (=(2))

+ ’wmin(p)}a Wmin(p) = sSup + Zmin(x)}-

el

Zmin(x) = inf
peT

P(z) ==

QT (M(z) = \/1 + (1 — n2)|v,z|2) .
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Theorem 2. A two-lens system (z, w) of type A with the refractor map P
defined by (z,w) is a weak solution (of type A) of the two-lens problem iff
it is a minimizer of the above variational problem.

Notes. (i) The Fermat-like functional F(z,w) is the mean horizontal dis-
tance between the lenses with the average weighted by intensities.

(11) The special class of maps (refractor maps) is “built” into the constraints.
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Computational algorithms

With the optimal transport approach, using the dual formulation one is re-
quired to solve a min (or max) problem with M « N number of linear con-
straints, where M and N is, respectively, the number of vertices in do-
mains 2 and T. For example, in the two-lens problem for the grids with
M 40,000 and N 40, 000 the full set of constraints is of order 1.6 10°.
In the primal formulation that number is the number of variables.

In the refractor problem (see p. 4) for a suitably defined primal problem the
cost, in addition to the variables (x,p) € Q2 x T, depends nonlinearly also
on the (unknown) phase. For the dual problem this nonlinearity enters the
constraints.
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For the two-lens problem treated in Theorem 1 we have:

Assume that both €2 and T are rectangular and discretized so that 2 has
M = My x My nodes {z;;} and TP has N = N; x Ny nodes {py;}. Let
I;; and Ly, be some suitable discretizations of intensities 7 and L. Then
the discrete versions of the functional and constraints are, respectively,

Minimize ZwkZLkl — Z ZZJIZ] (1)
k,l i,j
under constraints
wyy — 25 > —c(x45,py) foralld, g, k, 1. (2)

This is is a linear programming problem on M x N grid with M + N un-
knowns wy,;, z;; and M x N constraints in (2). In particular, if M = N then
the number of constraints grows quadratically with M.
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To overcome this difficulty we introduce progressively refined sequences
of grids combined with effective means for recomputing the solution at dif-
ferent levels of resolution, similar to numerical schemes in multi-resolution
methods. The key observation is that for an optimal solution only a fraction
of the constraints in (2) are active. This is true for a grid of any reso-
lution. Consequently, when passing from a grid with M nodes to a grid
with M’(> M) nodes we keep the set of constraints from the previous
run and add to it the constraints for nodes only in predefined neighbor-
hoods of active nodes. In this scheme the number of nodes grows lin-
early and the number of constraints grows only with order ~ M1t with
some 0 < € < 1. A similar idea was used for solving linear programming
problems with a fixed finite number of variables and infinite number of con-
straints. Since in our case the number of variable does not remain fixed
with grid refinement, the application of this idea is not immediate.
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One can include in this scheme an intermediate step at which constraints
are added for the same grid until a certain tolerance is achieved. After
that the grid is refined and the process is repeated. An obvious advantage
of this approach is that for each grid only a small fraction of admissible
solution candidates is examined and the solution variables are updated at
each step on the entire grid. However, more iteration steps are needed to
achieve high accuracy.

Investigation of convergence and efficient implementations of this
approach as well as its extension to problems of the “refracting lens”
type is a part of the current work.
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Test case. Determination of lenses for a two-lens optical system for re-
shaping the irradiance distribution of a laser beam.
Irradiance distribution for mask
illumination

[s it possible to generate this pattern by
reflective or refractive optics?

‘B
#t

Input: uniform rectangular distribution
with dimensions ~ 3mm X 6 mm

Input and out are collimated, propagate
in the same direction

255

John Hoffnagle 16 May 2008
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Lens 1 Lens 2

Computed lenses.

Grids: 198 x 198 square grids over cross sections of the input and output
beams.

About 40, 000 grid points on each set.

25
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Lenses 1 and 2 (times 100)

26
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Parts of the work on the two-lens system described above appeared
in: V. Oliker, Arch. Rational Mech. Anal., 201(2011), pp.1013-1045.

Parts of the work on using Optimal Transport methods in the near-
field reflector problem appeared in: T. Graf and V. Oliker, Inverse Prob-
lems, 28 (2012), pp. 1-15.

Current work: In addition to the work on development of fast computa-
tional algorithms for constructing numerical solutions of free-form design
problems, we are working also on development of a variational approach
to design of free-form single refractor systems producing required irradi-
ance on a given target in the near-field (as shown on p. 4).
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Papers submitted for publication and in preparation for submission:

1. V. Oliker, J. Rubinstein, G. Wolansky, Ray mapping and illumination
control, Submitted.

In this paper we investigate the ray mappings for systems with special sym-
metries and show that in such cases the same ray mapping found indepen-
dently of the optical problem can be realized by several different reflective
and refractive optical systems.

2. V. Oliker, J. Rubinstein, G. Wolansky, Determination of free-form refrac-
tive interfaces from near-field intensity data, In preparation.

We investigate the problem of design of a single refracting surface u(x), = €
2, that refracts an incident collimated beam of irradiance distribution I(z)
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such that the irradiance distribution created by the refracted beam on a
given plane is L(p),p € T see the illustration on p. 4. Here, unlike the
earlier example of a two-lens design, we do not prescribe the phase (= op-
tical path length) of the refracted beam (otherwise the problem is overde-
termined). The design goal can be achieved via a single refractor, but
the phase is now an additional unknown function. Sufficient conditions for
existence have been established. These conditions are physically mean-
ingful and linked with excluding lenses with total internal reflections. This
case will be considered separately. Development of efficient computational
algorithms for this class of problems is a part of the current work.
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The End
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