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OBJECTIVES 

Experimental & analytical investigation into building blocks of wall turbulence 

 

Attempt to unify statistical and spectral understanding  via explicit description 
of turbulent flow field in physical (x,y,z) and spectral (k,n,ω) space 

 

• Formulation of a multi-scale model of wall turbulence  
– singular value decomposition of the linear operator governing a canonical wall-bounded 

turbulent flow (McKeon & Sharma, 2010) 

• Experimental investigation of spatio-temporal spectrum 
– TRPIV (LeHew et al, 2011) 

• Investigation of response of ZPGTBL to “dynamic” roughness  
– Spatially-impulsive, time dependent wall perturbation (Jacobi & McKeon, 2011) 

• Maintenance of the mean velocity profile  
– Two-dimensional, three-component, 2D/3C, model (Bourguignon & McKeon, 2011) 



  

  

  

  

  
BULGES 

HAIRPIN 
PACKETS 

VERY LARGE SCALE MOTIONS 

LINEAR RECEPTIVITY 

Credits, CW from top left 
Hutchins & Marusic 

Gad-el-Hak 
Hellstroem, Sinha & Smits 

Monty, Stewart, Williams & Chong 
Adrian, Meinhart & Tomkins 

Del Alamo & Jimenez 

STATISTICS & SPECTRA 

“So, actually the 
elephant has all the 
features you 
mentioned…” 

GLOBAL MODES 

TOWARDS THE BUILDING BLOCKS OF TURBULENCE 

y/δ 

λ x
+ 



OBJECTIVES –CARTOON FORM 

McKeon et al, J. Fluid Mech. 2004 
McKeon & Sharma, J. Fluid Mech. 2010 
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Assume propagating modes with (k,n,ω) in a divergence-free basis 



WORK TO DATE: I 

McKeon et al, J. Fluid Mech. 2004 
McKeon & Sharma, J. Fluid Mech. 2010 
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Identify F(y) which leads 
to largest amplification – 
assume this appears in 
and dominates real flow 
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WORK TO DATE: II 

McKeon et al, J. Fluid Mech. 2004 
McKeon & Sharma, J. Fluid Mech. 2010 

Dynamic roughness expts 
External forcing 

2D/3C model 
Stochastic forcing 

Jacobi & McKeon, J. Fluid Mech. 2011 
Gayme et al, J. Fluid Mech. 2010 
Bourguignon & McKeon, Phys. Fluids 2011 
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BACKGROUND: VORTICAL STRUCTURE IN WALL TURBULENCE 

• Hairpin vortices and the attached eddy 
model (Theodorsen, 1952; Townsend, 1976; Perry & Chong, 
1982, et al) 
 

• Vortex packets, constant momentum zones, 
alignment of vortices along internal shear 
layers (Adrian, Meinhart & Tomkins, 2000) 

 

• Packet alignment in wall-parallel planes 
(Ganapathisubramani, Longmire & Marusic, 2003; Tomkins & 
Adrian, 2003) 
 

• Prograde and retrograde vortices (Falco, 1977; 
Carlier & Stanislas, 2005; Natrajan, Wu & Christensen, 2007) 

Theodorsen (1952) 

Ganapathisubramani et al (2003) 

Natrajan et al (2007) 

Adrian et al (2000) 



BACKGROUND: AMPLITUDE MODULATION AND SKEWNESS 

Mathis, Hutchins & Marusic, J. Fluid Mech. 2009 
Marusic, Mathis & Hutchins, Science 2010 

Mathis, Marusic, Hutchins & Sreenivasan, Phys. Fluids 2011 
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SHAPE OF THE RESPONSE MODES 

• Select three velocity response modes, vi, and linearly superpose 
 

• Wavenumber/frequency combinations are triadically consistent: 
k3=k1+k2, n3=n1+n2, c3=c1+c2,  
 

• “Ideal”/persistent combination: all modes have the same convection 
velocity 
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SHAPE OF THE RESPONSE MODES 
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STRUCTURE FROM RESPONSE MODES 
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STRUCTURE FROM RESPONSE MODES 
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MODULATING PACKET 
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STATISTICS FROM THE MODULATING PACKET 

u and v  “amplitude modulated” by large scale 

v>0 
v<0 

u’>0  u’<0 
 

Large scale 

 
Marusic, Mathis & Hutchins, Science 2010 

Amplitude modulation  
coefficient 

Velocity skewness 

Critical layer Critical layer 



AMPLITUDE MODULATION IN THE UNPERTURBED TBL 

 
Chung & McKeon, J. Fluid Mech. 2010 

 
Marusic, Mathis & Hutchins, Science 2010 
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uS>0 uS<0 

Zero 
crossing 

Bandyopadhyay & Hussain, Phys. Fluids, 1984 
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AMPLITUDE MODULATION IN THE PERTURBED TBL 
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MODULATION EFFECT OF THE ARTIFICIAL LARGE SCALE 

Zero crossing 
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A BLUEPRINT FOR CONTROLLING TURBULENCE 

V*000 (y) 



CONCLUSIONS 

• Critical layer framework of McKeon & Sharma (2010) extended from 
reconstruction of significant features of statistics of wall turbulence  

– Nonlinearity retained (and supports mean velocity profile) 

– Provides basis for coherence in y 

– Prediction of hairpin vortices from decomposition of Navier-Stokes equations at each 
wavenumber-frequency combination 

 

• Proposed new kernel of turbulence 
– Three mode representation with appropriate relative phases (fixed to agree with 

experiment at the VLSM critical layer) 

– Leads to recognizable hairpin packet structure 

– Captures  skewness and amplitude modulation behavior (these are linear phenomena) 

– Consistent with attached eddy hypothesis 

– Importance of critical layer proven by dynamic roughness and predictable (not shown) 
 

• The response of the TBL to a synthetic large scale via a spatial impulse of 
dynamic roughness (last two years’ reviews) confirms results 

– Coupling of external forcing to the most amplified modes 

– Suggests method can be used for control of near-wall structure 



OUTSTANDING CHALLENGES 

• Phase… 
 

• Need to bridge the gap between theoretical and experimental studies 
 

• Extension of model: other classical results using essentially linear model? 
 

• “Close the loop”: determine correct nonlinear forcing for model to support 
correct mean velocity profile (currently assumed)? 

– Success will provide informed approach to control 

– Restores the difficulty of nonlinearity in the problem 
 

• Coupling of dynamic roughness actuation with amplified modes 
demonstrated but what is best (practical) way of exciting them? 
 

• Accurate values of shear stress required to make any scaling arguments for 
controlled/manipulated cases 
 

• Low order model? 
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