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Research Goals
¢ microscopy tools and develop an atomic-scale understanding of the factors controlling th
thermochemical stabilities and mechanical properties of UHTCs.

Status Ono New Insights Impac

o Refractory ceramics are often considered brittle with little or no | | * Transition-metal carbides exhibit room temperature ductility at | | * Room-temperature plasticity in refractory ceramics could open up
dislocation motion at room temperature. small length scales. potentially new applications.
o Annealing in hydrocarbon ambient is likely to reduce the oxide. = Surface oxidation of transition-metal oxides is enhanced in presence = Design and development of high-performance transition-metal
s S ; : . [ ocar ase oxide lysts and catalyst supports.
o Carburization and oxidation mechanisms are often derived from pERYUCEIT o S : : : b _
ex sifu post-synthesis and post-processing treatments. = Diffusivity of carbon atoms is high in and on the SiC(0001) and = Development of better graphite/SiC composite and graphene
o Diffusion mechanisms governing thermal stability of liquid graphitization of SiC is limited by the desorption of Si atoms. production technologies.
5 anisms g g al st 3

Ripening kinetics can, in principle, help determine surface ene

metal-carbon interfaces are largely unknown. = Ga droplets undergo Ostwald ripening on carbon surfaces,

of liquid metals.

Main Accomplishments
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% In situ TEM studies of S1C(0001), ZrC(001), and ZrC(111)
nanomechanics

% In situ high-temperature STM (~1400 K) studies of
S1C(0001) surface graphitization

* [n situ STM studies of T10,(110)/C,H, reactions

% In situ TEM studies of metal/ceramic interface dynamics
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Loading sequence:
1) upto 150 nm, 2) up to 200 nm, & 3) 300 nm.

2

S1C(0001)
d =200 nm
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Load vs displacement data were acquired while
observing microscopic & structural changes during
uniaxial compression of the pillars.
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Room temperature plastic deformation of SiC(0001) pillars.
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g Yield strength increases with
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In situ TEM movie showing shear deformation of a ZrC(001)
pillar during uniaxial compression at room temperature
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Arrows highlight the initiation &
propagation of shear planes Yield strength increases
under applied load with decreasing size
-- indicative of plastic
deformation via shear
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direct evidence of dislocation motion in ZrC at room
temperture -- origin of plasticity
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= As early as 1930s, bulk ionic crystals (KCI,
MgO, etc.) have been shown to deform

plastically at room temperature.
[A. Gorum, E. Parker, and J. Pask, J. Am. Ceram. Soc. 41,
161-164 (1958).]

= Theory predicts that fracture stress increases
with decreasing sample size and below a
critical size yielding, rather than brittle fracture,
is favored.
[K. Kendall, Nature 272, 710-711 (1978).]

= [n pure single-crystals, at small sizes, defect
density is likely to be low, i.e. the material can
withstand higher stresses without fracture --
necessary condition for dislocation motion.

= We expect that this is the case in our
experiments.
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Nanomechanics: Summary

In situ observations reveal room-temperature
plasticity and size-dependent yield strengths in
single-crystalline SiC and ZrC samples.

Our results are likely to open up new applications
and the design & fabrication of hard-yet-tough
ceramics.
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In Situ High-T STM Studies of
Carburization of SiC(0001)

GOAL:
Determine the atomistics of surface carburization
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Annealing SiC(0001) in vacuum leads to desorption of Si &
formation of graphene > nnnns

SiC,) — —>

A.J. van Bommel, J.E. Crombeen, & A. van Tooren, Surf. Sci. 48, 463 (1975).

2raphene

Previous studies have shown that:
o Vacuum anneal — nucleation of graphene at S1C step edges
o Presence of Si shifts graphene formation to higher temperatures

J. B. Hannon & R. M. Tromp, Phys. Rev. B 77 (2008); R. M. Tromp & J. B. Hannon, Phys. Rev. Lett.
102 (2009).

T. Ohta, F. El Gabaly, A. Bostwick, J.L. McChesney, K.V. Emtsev, A.K. Schmid, T. Seyller, K. Horn,
& E. Rotenberg, New J. Physics 10 (2008).

H. Hibino, S. Mizuno, H. Kageshima, M. Nagase, & H. Yamaguchi, Phys. Rev. B 80 (2009).

Relatively little is known concerning the atomistics of
graphene formation on SiC
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A. Substrate: 6H-S1C(0001) SIC(OOO1 )-3 x 3

R

‘!‘t “rn
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C. Deposit Si at ~ 900 °C '{.\1‘
— 3 x 3 reconstruction \ \ “
) \t "\\

B. Clean in UHV (<2 10719 Torr) \ AS

‘~. .
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D. Anneal in UHV at T > 1100 °C :\.” l
— STM : ~
°
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T=1120°

l-=0.2nA, V;=0.2V, 61 x 48 nm?

Monolayer gr'apheneh covered surface
wit
bilayer graphene at the step edges
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T=1120°C

147 min

%\
_ ;ff black: SiC island

/‘J'J Yellow : 2™ layer graphene

SiC islands shrink, while graphene area increases.

N

112 x 46 nm?

Y. Murata, V. Petrova, I. Petrov, and S. Kodambaka, Thin Solid Films 520, 5289 (2012).
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Y. Murata, V. Petrova, I. Petrov, and S. Kodambaka, Thin Solid Films 520, 5289 (2012).
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T
- Bilayer graphene growth on 6H-SIC(0001) was

investigated by HT- STM.

« We observed three modes of graphene growth:
1) at graphene-free SiC step,
2) at graphene-SiC interface and
3) outward of graphene.

 |dentified a possible rate-limiting step for bilayer
graphene growth.

« STM is a powerful /n situ technique to follow the
surface carburization of refractory carbides.
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In Situ High-Temperature STM Studies

of C,H,-TiO,(110) Reactions

GOAL:
Investigate the effects of gas chemistry (vacuum, O,,
C,H,) on surface structure.
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uioy TOP view

rutile TiO,

; : a® a=0.459 nm
001] c=0.296 nm

TiO,(110)-1x1

[110] = 0.649 nm
[001] =0.296 nm

@ T
O Oxygen

J. Chem. Soc., Faraday Trans., 1998, 94(1), 161-166
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rutile TiO,

a=0.459 nm
c=0.296 nm

TiO,(110)-2x1

[110] =1.299 nm
[001] =0.296 nm

0
a

x (A)
Single links Cross-links =

@ T
O Oxygen

R. A. Bennett. P. Stone. N.J. Price. and M. Bowker
Phys. Rev. Lett. 82, 3831 (1998).
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TiO,(110): Experimental

1. Ar" sputter, 1 KeV, 30 min
2. Vacuum anneal (~1O'1O mbar) at 1100 K, 5 min
3. Anneal in O, (10° mbar) at 700 K, 30 min

1x2 LEED (200 eV)
4. In situ STM, STS
= T: 700 —1000 K (0 — 120 min)
= P: vacuum, O,, C,H, (10'10 ~107/ mbar)
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T =1000 K, UHV: 1.0 x 10-1" mbar

12in - 43 min

111 x 111 nm?

Annealing in vacuum — decrease in TiO, coverage,
i.e. O-deficient surfaces form
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T =1000 K, O,: 5.0 x 10" mbar

O min 39 min

150 x 150 nm?

Annealing in O, — restores stoichiometric surface.
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T =1000 K, C,H,: 1.3 x 10" mbar

0 min 17 min 44 min

150 x 150 nm?

Surface island area increases with time
= growth of TiO |l

Y. Murata, V. Petrova, 1. Petrov, C. V. Ciobanu, & S. Kodambaka, Appl. Phys. Lett. 101, 211601 (2012).
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T =900 K, C,H,: 1.3 x 10”7 mbar

0 min 30 min 119 min

150 x 150 nm?

gray & green: 2x1  TiO, coverage increases with time
Red: 1x1

Y. Murata, V. Petrova, 1. Petrov, C. V. Ciobanu, & S. Kodambaka, Appl. Phys. Lett. 101, 211601 (2012).
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Growth rate (ML/Torr.s)

700 800 900 1000
T(K)

C,H, promotes growth of TiO, on the surface

Y. Murata, V. Petrova, 1. Petrov, C. V. Ciobanu, & S. Kodambaka, Appl. Phys. Lett. 101, 211601 (2012).
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= In situ HT-STM used to investigate the effect of reducing gas
on the surface structure of TiO,(110).

» Observed TiO,(110)-1x1 < 2x1 as a function of T & ambient
chemistry.

* TiO,(110)-1x1 area T as OZT
&as T \L

= C,H, promotes the growth of TiO.,.
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Liquid-metal/Solid Interface Dynamics:
Ostwald ripening of Ga droplets on carbon

GOAL: To understand the mass transport
mechanisms controlling thermal stability
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Ostwald ripening

o Curvature-driven process
o Large clusters grow at the expense of small clusters
o Governed by Gibbs-Thomson relation
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Gibbs-Thomson relation

(N : atoms/A2
N(I‘) _ exp( 2yQ) . 4 Q:volume/atom (A3)

v :surface tension
T C A R

N (atoms/A2)

Atomic processes

1. Detachment from small droplets
2. Diffusion on the surface
3. Attachment at larger droplets.

Mean-Field Theory
= uniform surface adatom

concentration
HIarge dropletSizes v o (t+-t)n {n = 1 = detachment-limited
exgl D2 1, WO n = 3/4 = diffusion-limited
\ rkT ) kT

[.M. Lifshitz & V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).
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T =500 °C

Scahlembé‘r: 200 nm -
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0 5 10 15 20 10 100 700
t(3) tend-t (S)

Droplet decay rates are consistent with
surface-diffusion-limited kinetics
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In situ TEM: Summary

In situ high-temperature TEM studies are useful in
determining the mass transport mechanisms
controlling the thermal stability of interfaces.

Our ongoing studies are focused on extending these
approaches to the investigation of ceramic-ceramic
interfaces.



