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Motivation

'~ Microstructure and properties modeling requires availability
of reliable and accurate descriptions of grain and particle
shapes.

make a library of real shapes and reuse them

quantify shapes and sample distributions of shape descriptors fo
generate new shapes with similar characteristics

generate shapes using physics-based modeling (requires objective comparison
between digital and real shapes)



Motivation

' Shapes are typically described

verbally (mostly shape classes, conveys limited quantitative information)
mathematically (implicit or explicit equation, exact description)
digitally (voxel grid, characteristic or shape function, approximate)

graphically (triangles or higher order polygons covering the surface,
approximate)

'~ The human brain is VERY good af identifying shapes;

'~ To mimic this in a computer program is VERY difficult.



Current Practice

~ When comparing experimentally observed shapes with
theoretical predictions/simulations or reconstructions, one
often uses/hears phrases like

“that looks good!” or
— "they look pretty much the same”

~ Our long-term goal is to replace these statements by
quantitative ones...



A tamiliar concept: 1-D moments

_ _ (z—p)?

Gaussian G(x; p,0) = e 202
o\ 2T
Moments
f 5 b
ﬁ —+ o0

Order O / dx G(z; p, o) Area 1

-

T Order 1 / dr zG(x; pu, o) Mean v

f \ R - 2 2
) Order 2 /_Ooda:zc G(z;p,0)  Width u“+o

+ 00
Order 3 / dz2°G(x;p,0)  Skewness “asymmetry”

oo Y ”
OI’dGI’4/ da:a:4G(a:;u,a) Kurtosis peakedness



What about 2-D ?
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What about 2-D ?

Multiple reference frames are possible

One is special (“eigen” frame, in orange)
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Moments depend on the reference frame...

Upg = / / dxdy 2Py
D

A coordinate-independent moment
description is highly desirable



2-D moment invariants

too = A (area)
(410, o1) = center-of-mass

(,uQ(), o2, ,u11) — moments-of-inertia

There are two dimensionless combinations of moments that are
invariant under similarity or affine coordinate transformations:
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There are the moment invariants (Mls) of second order.
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SOMIM

Second Order
Moment Invariant Map

All 2D shapes
lie inside this
grey areq !
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3-D moment invariants

~ Consider the shape function of an object:

' The cartesian shape moments are defined as:

— S Py 4T — S pDyyd T
Spqr—/ drmyzD(r)—/dra:yz
all space V

 These can be computed efficiently

see Novotni & Klein, Shape retrieval using 3D Zernike descriptors. Computer-Aided
Design, 36:1047-1062, 2004

~ Certain algebraic combinations of moments are invariant
with respect to coordinate transformations
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3-D moment invariants

" The second order moment invariants are:

' Typically, we normalize these numbers by the sphere
numbers, to get invariants in the interval [01]
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Example: Ellipsoia
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Moment Invariant Space
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Moment Invariant Space

Rene88-DT
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2-D vs. 3-D

——  Modern fools allow for nearly automated 3-D characterization of
microstructures; however, the experiments are time-consuming, the
equipment is expensive and data analysis is not straightforward.

——  Traditional metallography is widely used, relatively cheap and fast, so if we
had the ability fo determine 3-D shapes based on 2-D sections only, that
would be an important improvement.

—— Isit possible to have a computer algorithm decide what the most likely 3-D
shape is that corresponds to a 2-D image of, say, precipitates in a material?
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2-D higher-order moments
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' Let us consider only 2" and 4™ order invariants...
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5-D: simplification to 2-D

We'll take the average of the 2 order and the average of the 4™
order invariants, which corresponds to projecting the invariants
onto the diagonals of the respective invariant spaces.

1

1

This allows us to create a Projected Moment Invariant Map or
PMIM, in addition to the SOMIM that we introduced before.
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Moment invariant density maps
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'~ Let's consider two applications of these density maps ...
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Shape Density Map Library

——  Pick a 3D shape class, and represent several representative members in a
binary array of voxels;

——  Slice through these arrays in many random orientations, and for each secfion,
compute the 2 and 4" order moment invariants;

——  This produces, for each section, a single point in the SOMIM and PMIM maps;

—— Accumulate many points for thousands of random sections and plot the SOMIM
and PMIM maps as density maps; the value in a given point is then
proportional to the probability that a random section through the object will
produce the corresponding values of the moment invariants.

—— Do this for a series of shape class members fo create a density map library.
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Examples
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Experimental alloy UMF-19

Ni-6.0Al-7.2C0-6.7Cr-4.5Re-8.1Ta-3.0W-5.7Ru
Alloy courtesy of T. Pollock, UCSB

>

Registration

lllumination
correction

Segmentation

Focused lon Beam
Serial Sectioning These precipitates are described to have
140 slces near [111] a cuboidal shape. Can we be more
P microns, 20 nm sees precise and quantify these shapes, given
a shape class? And, can we do this if we
consider only the 2-D shapes!?
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UMF-19 2-D sections

Experimental data
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Comparison of maps

The modified Bhattacharyya coefficient H(p, q), also known as the Hellinger
distance, was found to provide a good balance between ease of use, speed of
computation and the ability to distinguish between two different density maps
p and ¢q. The regular Bhattacharyya coefficient 3(p,q) is a measure of the
similarity between two normalized distributions and can be written in discrete
form as :

Bp.a) = Y Vp(a(0), <with§jp<z'> =Y ai) = 1) (1

where the summation runs over all of the NV bins of the SOMIM or PMIM
density maps. The larger the value of 3, the more similar the two distributions
are. The Hellinger distance H (p, q) is defined by

H(p,q) = /1 - B(p,q), (2)

and can be shown to satisfy all the requirements to be a true metric (8(p, q) itself
is not a metric since it does not satisfy the triangle inequality); the similarity
between two distributions p and ¢ is higher for smaller values of H(p, q).
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Comparison of maps

Shape H(SOMIM) | H(PMIM) | weighted
n=06 0.433 0.405 0.420
n=>5 0.471 0.444 0.458
n=4 0.570 0.552 0.561

Analysis of 2-D sections (near [| | I]) suggests a 3-D shape
with an exponent between n=5 and n=6.

Use full 3-D analysis to verify whether or not this is

reasonable...

26




UMF ]9 3 D unﬂ|YS|S (preliminary)

Tl + —_9F[ﬁ_
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T

3-D affine invariant 0
for the superellipsoid: 3

From .histogram of s = 0.89
experimental values:

Solve for n: n =94

3-D result is consistent with 2-D finding, lending some
confidence to the moment invariant density map
characterization of shapes from 2-D experimental sections.
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RMS Hellinger Distance

Percentage Elongation

This is an encouraging result;
further analysis on more
realistic microstructures
(including experimental data)
is underway.
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Conclusions

——  Moment invariants are useful shape descriptors; 2™ order may not be
sufficient for the wide range of shapes present in modern materials.

——  Quantitative and objective comparison between experimental and
reconstructed shapes requires the use of easily computable shape descriptors.

— In particular, moment invariants allow for a quantitative description of o/’
precipitate shapes

SOMIM and PMIM density maps appear to be a good approach for 3-D shape
identification from 2-D sections

—
— Inclusion of higher order moments both in 2-D and 3-D will be necessary for
more complex shapes.
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