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Motivation
Shape descriptors: why use them?
Moment invariants and such...

2D

3D

Alternative moment approaches
Conclusions & Future work
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Motivation
Microstructure and properties modeling requires availability 
of reliable and accurate descriptions of grain and particle 
shapes.

make a library of real shapes and reuse them

quantify shapes and sample distributions of shape descriptors to 
generate new shapes with similar characteristics

generate shapes using physics-based modeling (requires objective comparison 
between digital and real shapes)
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Shapes are typically described 
verbally (mostly shape classes, conveys limited quantitative information)

mathematically (implicit or explicit equation, exact description)

digitally (voxel grid, characteristic or shape function, approximate)

graphically (triangles or higher order polygons covering the surface, 
approximate)

The human brain is VERY good at identifying shapes; 

To mimic this in a computer program is VERY difficult.

Motivation

4



When comparing experimentally observed shapes with 
theoretical predictions/simulations or reconstructions, one 
often uses/hears phrases like 

“that looks good!” or 

“they look pretty much the same”

Our long-term goal is to replace these statements by 
quantitative ones...

Current Practice
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A familiar concept: 1-D moments

6



What about 2-D ?
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What about 2-D ?
Multiple reference frames are possible

One is special (“eigen” frame, in orange)

Moments depend on the reference frame...

A coordinate-independent moment 
description is highly desirable
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µ00 = A (area)

(µ10, µ01) = center-of-mass

(µ20, µ02, µ11) = moments-of-inertia

!1 =
2A2

µ20 + µ02
and !2 =

A4

µ20µ02 � µ2
11

2-D moment invariants

There are two dimensionless combinations of moments that are 
invariant under similarity or affine coordinate transformations:

There are the moment invariants (MIs) of second order.
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Consider the shape function of an object:

The cartesian shape moments are defined as:

These can be computed efficiently
see Novotni & Klein,  Shape retrieval using 3D Zernike descriptors. Computer-Aided 
Design, 36:1047–1062, 2004

Certain algebraic combinations of moments are invariant 
with respect to coordinate transformations

spqr =

∫
all space

d3
rxpyqzrD(r) =

∫
V

d3
rxpyqzr
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3-D moment invariants
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The second order moment invariants are:

Typically, we normalize these numbers by the sphere 
numbers, to get invariants in the interval [0,1]
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3-D moment invariants
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Example: Ellipsoid
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Moment Invariant Space
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Moment Invariant Space

Rene88-DT

15



2-D vs. 3-D

Modern tools allow for nearly automated 3-D characterization of 
microstructures; however, the experiments are time-consuming, the 
equipment is expensive and data analysis is not straightforward.

Traditional metallography is widely used, relatively cheap and fast, so if we 
had the ability to determine 3-D shapes based on 2-D sections only, that 
would be an important improvement.

Is it possible to have a computer algorithm decide what the most likely 3-D 
shape is that corresponds to a 2-D image of, say, precipitates in a material?

16
16



invariants, in that they contain central moments of more than one order.
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Invariants �1 through �4 are constructed from third order moments only, and vanish for

symmetric shapes such as the rectangle and the ellipse; there are an additional four invariants

of mixed second and third order:

⇤m
5 =

1

A7

�
4µ̄11(µ̄03 + µ̄21)(µ̄30 + µ̄12) + (µ̄02 � µ̄20)((µ̄03 + µ̄21)

2 � (µ̄30 + µ̄12)
2)
⇥

(12a)

⇤s,m
6 =

1

A7

�
µ̄11((µ̄03 + µ̄21)

2 � (µ̄30 + µ̄12)
2) + (µ̄20 � µ̄02)(µ̄30 + µ̄21)(µ̄03 + µ̄12)

⇥
; (12b)

⇤a,m
7 =

1

A7

�
µ̄11(µ̄12µ̄21 � µ̄30µ̄03) + µ̄20µ̄21µ̄03 + µ̄02µ̄30µ̄12 � µ̄20µ̄

2
12 � µ̄02µ̄

2
21

⇥
; (12c)

⇤a,m
8 =

1

A11

�
12µ̄20µ̄11µ̄02µ̄21µ̄12 + 6µ̄11(µ̄

2
20µ̄12µ̄03 + µ̄2

02µ̄30µ̄21)� 6µ̄2
11(µ̄20µ̄21µ̄03 + µ̄02µ̄30µ̄12)

�6µ̄2
11(µ̄20µ̄

2
12 + µ̄02µ̄

2
21) + 2µ̄3

11(µ̄30µ̄03 + 3µ̄21µ̄12)� 3µ̄20µ̄02(µ̄20µ̄
2
12 + µ̄02µ̄

2
21)

�µ̄3
20µ̄

2
03 � µ̄3

02µ̄
2
30

⇥
; (12d)

For the fourth order moment invariants, ⇥i, we divide the appropriate power of the area by

the invariant combination, similar to the expressions shown in eq. (3a). The fourth order

moments are derived from the following complex moment combinations:

c22,⇥[c31c212],⇥[c40c412]; ⇤[c31c212],⇤[c40c412]. (13)

Among these invariants, we consider those that consist only of fourth order moments (i.e.,

no mixed order moment invariants):
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The pre-factors are chosen so that the circle has � = (1, 1, 1). Note that there are no pure

fourth order skew invariants, but there are several fourth order invariants of mixed order;
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anisotropic scaling). The moment invariants can be expressed in a normalized (dimensionless)

form by appropriate scaling with respect to the object surface area A = µ00. In our earlier

work [8], we have identified the following two moment invariants of second order:
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The normalization factors are chosen so that 0 ⇤ ⌅i ⇤ 1 for all 2D shapes. For the circle, we

have ⌅1 = ⌅2 = 1, whereas for all shapes with isotropic moments of inertia we have ⌅2 = ⌅2
1.

It can also be shown that 0 ⇤ ⌅2
1 ⇤ ⌅2 ⇤ 1 for all 2D shapes [8,10]. This property leads

to an elegant graphical representation of the second-order moment invariants, as shown in

Fig. 1. All shapes are represented by points inside the grey area, including the parabola and

the line ⌅2 = 1, which corresponds to the set of all ellipses, for which the moment invariants

are given by:
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where ⇤ is the aspect ratio of the principal axes. For rectangles with aspect ratio ⇤ we have:

�rectangle =

⇤
6⇤

⇥(1 + ⇤ 2)
,
9
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hence, all rectangles lie on the line ⌅2 = 0.9119. Similarly, all triangles lie along a line at

⌅2 = 27/4⇥2 = 0.6839. The larger the rectangle aspect ratio, the further to the left of the

map the corresponding point will move. One can prove that all objects with a given aspect

ratio have moment invariants that lie along parabolas, such as the ones superimposed on

the map [8]; in particular, all objects with aspect ratio 1 lie along the rightmost parabola.

We will refer to this graphical representation as the second order moment invariant map

(SOMIM).

2.2 Higher Order Moments

For a 1D distribution, the second order moment is essentially equal to the variance (squared

standard deviation) of the distribution, and describes the width of the distribution. Higher

order moments are known as the skewness (3rd order) and kurtosis (4th order), and describe

4
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Let us consider only 2nd and 4th order invariants...

This is already a 5-D space ...

2-D higher-order moments
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We’ll take the average of the 2nd order and the average of the 4th 
order invariants, which corresponds to projecting the invariants 
onto the diagonals of the respective invariant spaces.

This allows us to create a Projected Moment Invariant Map or 
PMIM, in addition to the SOMIM that we introduced before.

5-D: simplification to 2-D
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Figures and Figure Captions
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Second-Order Moment Invariant Map

Fig. 1. Illustration of the 2D moment invariant space. All 2D shapes have second order moment

invariants that lie inside the grey area (which includes the solid lines). Several important shapes

have been indicated on the map.
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Fig. 2. Projected moment invariant map of second and fourth order, with ellipse, rectangle, and

isoceles triangle curves superimposed. The left-most points correspond to the limit of ⇥, � � 0;

the right-most points correspond to the high symmetry versions of the three shape classes (circle,

square, and equilateral triangle).
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Moment invariant density maps

Let’s consider two applications of these density maps ...
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Shape Density Map Library
Pick a 3D shape class, and represent several representative members in a 
binary array of voxels;

Slice through these arrays in many random orientations, and for each section, 
compute the 2nd and 4th order moment invariants;

This produces, for each section, a single point in the SOMIM and PMIM maps;

Accumulate many points for thousands of random sections and plot the SOMIM 
and PMIM maps as density maps; the value in a given point is then 
proportional to the probability that a random section through the object will 
produce the corresponding values of the moment invariants.

Do this for a series of shape class members to create a density map library.
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Fig. 3. Second order moment invariant density maps (SOMIM) for the following shapes: (a) cube,

(b) octahedron, (c) tetrahedron, (d-f) ellipses with aspect ratios 1 : 1 : 3, 1 : 2 : 3, and 2 : 2 : 3, (g-i)

rectangular prisms with the same aspect ratios, and (j-l) circular cylinders with height-to-diameter

ratios 6 : 1, 1 : 1, and 1 : 2. The striations/oscillations that are visible in the low amplitude regions

of several of the density maps are due to the voxelized nature of the object. The solid horizontal

lines indicate the geometric locations of the prisms and triangles; the parabolas indicate shapes of

constant aspect ratio, as defined in Fig. 1. The color legend is shown at the top left.
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Fig. 4. Projected moment invariant density maps (PMIM of second and fourth order), for the same

shapes and color legend as Fig. 3. The solid curved lines indicate the geometric locations (from top

to bottom) of ellipses, rectangular prisms, and triangles, as defined in Fig. 2.
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Examples

21



Experimental alloy UMF-19
Ni-6.0Al-7.2Co-6.7Cr-4.5Re-8.1Ta-3.0W-5.7Ru

Alloy courtesy of T. Pollock, UCSB

Focused Ion Beam
Serial Sectioning

140 slices near [111]
7x7 microns, 20 nm slices

Registration

Illumination
correction

Segmentation

These precipitates are described to have
a cuboidal shape.  Can we be more 
precise and quantify these shapes, given
a shape class?  And, can we do this if we
consider only the 2-D shapes?
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Cuboidal shapes: superellipsoid
Shape class:
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UMF-19   2-D sections

n=3 n=4 n=6

(a) (b) (c)

Experimental data

Superellipsoid
library maps
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The modified Bhattacharyya coe�cient H(p, q), also known as the Hellinger
distance, was found to provide a good balance between ease of use, speed of
computation and the ability to distinguish between two di�erent density maps
p and q. The regular Bhattacharyya coe⇥cient �(p, q) is a measure of the
similarity between two normalized distributions and can be written in discrete
form as :

�(p, q) =
NX

i=1

p
p(i)q(i),

 
with

NX

i=1

p(i) =
NX

i=1

q(i) = 1

!
(1)

where the summation runs over all of the N bins of the SOMIM or PMIM
density maps. The larger the value of �, the more similar the two distributions
are. The Hellinger distance H(p, q) is defined by

H(p, q) =
p
1� �(p, q), (2)

and can be shown to satisfy all the requirements to be a true metric (�(p, q) itself
is not a metric since it does not satisfy the triangle inequality); the similarity
between two distributions p and q is higher for smaller values of H(p, q).
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Comparison of maps
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Shape H(SOMIM) H(PMIM) weighted

n=6 0.433 0.405 0.420

n=5 0.471 0.444 0.458

n=4 0.570 0.552 0.561

Comparison of maps

Analysis of 2-D sections (near [111]) suggests a 3-D shape
with an exponent between n=5 and n=6.

Use full 3-D analysis to verify whether or not this is 
reasonable...
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UMF-19   3-D analysis (preliminary)

⌦3 =

✓
6

⇡

◆2 �[1 + 1
n ]

9�[ 5n ]
3

�[ 3n ]
3�[1 + 3

n ]
5

3-D affine invariant
for the superellipsoid:

⌦3 = 0.89From histogram of 
experimental values:   

n = 5.4Solve for n:

3-D result is consistent with 2-D finding, lending some 
confidence to the moment invariant density map 
characterization of shapes from 2-D experimental sections.
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Example 2: detection of rafting
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This is an encouraging result;
further analysis on more 
realistic microstructures 
(including experimental data) 
is underway.
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Conclusions
Moment invariants are useful shape descriptors; 2nd order may not be 
sufficient for the wide range of shapes present in modern materials.

Quantitative and objective comparison between experimental and 
reconstructed shapes requires the use of easily computable shape descriptors.

In particular, moment invariants allow for a quantitative description of ’ 
precipitate shapes

SOMIM and PMIM density maps appear to be a good approach for 3-D shape 
identification from 2-D sections

Inclusion of higher order moments both in 2-D and 3-D will be necessary for 
more complex shapes.
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