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Status Quo:  High performance magnetic  alloys use rare earth elements that are expensive and rare in USA.  

New Insight: Non-rare earth elements in proper concentrations can create high performance magnetic alloys.

Project Goal: Develop and experimentally verify a computational method for designing  optimized 
chemistries of high strength/high temperature hard magnetic alloys with no rare earth elements.

Main Accomplishments
Why and How How and Why  

Periodically manufacturing samples of the optimized Existing theoretical formulations and accompanying Periodically manufacturing samples of the optimized 

candidate alloys and testing them will verify the alloy 

properties predicted by the multi-objective optimization 

and enhance the accuracy of the entire alloy design process. 

An inverse design  method will also be developed where the 

multiple physical properties of a magnetic alloy are specified 

by the designer, while chemistries of the alloys that can 

produce these specified values will then be determined.

Existing theoretical formulations and accompanying 

software can predict only certain physical properties of 

such materials. Since they are currently limited to at 

most three alloying elements, the use of purely 

computational tools to predict multiple properties of 

candidate alloys involving more than three alloying 

elements is currently infeasible. 

We propose to adapt and use advanced semi-stochastic 

algorithms for constrained multi-objective optimization 

in combination with experimental testing and 

verification of candidate alloys to determine optimum 

concentrations of alloying elements used for magnetic 

alloys that will simultaneously maximize a number of 

the alloy’s macroscopic conflicting properties.
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Direct Design Problem
Optimization of chemical composition of alloys for 

maximum performance
Purpose: Determine Pareto optimal macroscopic properties of an alloy 

family by finding the corresponding optimal concentrations of the alloying 

elements. 

Problem features:

variable parameters: Concentrations of the alloying elements used variable parameters: Concentrations of the alloying elements used 

C, S, P, Cr, Ni, Mn, Si, Cu, Mo, Pb, Co, Cb, W, Sn, Al, Zn, Ti

( 8,…,17 variables).

Simultaneous objectives (for example):

•Stress (PSI – maximize);

•Operating temperature (T – maximize);

•Time to "survive" until rupture (Hours – maximize).

Mathematical model: Does not exist; hence, use an existing database



� Direct Design Objectives

Adapt an advanced semi-stochastic algorithm for 

constrained multi-objective optimization and combine it 

with experimental testing and verification to determine 

optimum concentrations of alloying elements in alloys 

that will simultaneously maximize a number of alloy’s that will simultaneously maximize a number of alloy’s 

properties.

The proposed algorithm also requires a minimum 

number of alloy samples that need to be produced and 

experimentally tested thus minimizing the overall cost of 

automatically designing high-strength alloys. 



Example of “Getting Out-of-the-Box” Alloy Design
� This work was aimed at optimizing Ni- based heat-res istant 

alloy castings containing Ni, C, Cr, Co, W, Mo, Al, Ti, B, Nb, Ce, 
Zr, Y, and trace amounts of S, P, Fe, Mn, Si, Pb, Bi.

� The technology used in the casting allowed us to al ter the 
chemical composition by varying concentrations of t he 
following elements:  Ni, C, Cr, Co, W, Mo, Al, Ti.

� The concentrations of Nb, B, Ce, Zr, Y in all test samples were 
1.1%, 0.025%, 0.015%, 0.04%, and 0.01%, respectivel y.

� In this optimization task the concentrations of seven
elements: C, Cr, Co, W, Mo, Al, Ti were used as variable 
parameters.

� Thermal treatment of the samples involved heating t hem to 
1210 С, holding for 4 hours, and air cooling.

� During these tests the stress at room temperature ( sigma) and 
the time to survive until rupture (hours) at temper ature of 975 
С and stress of 2300 N/mm**2 were measured.



� The optimization was conducted by simultaneously 
maximizing stress (SIGMA) and time-to rupture (HOUR S).

� At each optimization iteration, a two-criterion opt imization task 
with a specified number of Pareto optimal points wa s solved. 

� The user-specified number of Pareto points was 20.
� At the start, the initial experiment plan including  120 alloys 

was developed by distributing their chemical compos itions via 
Sobol’s algorithm in order to minimize the total num ber of 
alloys that need to be tested.
This information was used for building an approxima tion � This information was used for building an approxima tion 
function (a multi-dimensional response surface) for  the first 
iteration.

� This approximation function was then optimized usin g a 
variant of IOSO. The result was a set of chemical c ompositions 
of 20 new alloys which could be a part of the new P areto set.

� Next step was manufacturing and experimental evalua tion of 
the two properties (maximum stress and time-to-rupt ure at 975 
C) for each of these 20 newly found alloys.



Initial 120 nickel 
based alloys and 20 
alloys predicted by 
the 1st iteration with 
IOSO optimizer.

All new alloys were 
then experimentally 
tested for maximum 
strength and time -to-strength and time -to-
rupture at 975 
degrees Celsius.



Initial 120 alloys plus 
20 alloys from first 
iteration and 20 alloys 
predicted by the 2nd 
iteration with IOSO 
optimizer. 

All new alloys 
were then 
experimentally tested experimentally tested 
for maximum strength 
and time-to-rupture at 
975 degrees Celsius.



Initial 120 alloys plus 20 
alloys from 1st iteration, 
plus 20 alloys from 2nd 
iteration, plus 20 alloys 
predicted by the 3rd 
iteration with IOSO 
optimizer. 

All new alloys 
were then were then 
experimentally tested for 
maximum strength and 
time-to-rupture at 975 
degrees Celsius.



Initial 120 alloys plus 
20 alloys from 1st 
iteration, plus 20 
alloys from 2nd 
iteration, plus 20 
alloys from 3rd 
iteration, plus 20 
alloys predicted by the 
4th iteration with IOSO 
optimizer. 

All alloys were 
experimentally tested 
for maximum strength 
and time-to-rupture at 
975 degrees Celsius.



Summary of experimentally verified time-to-rupture (at 975 
Celsius) and tensile strengths of 120 original stee l alloys (black 
circles) and the four generations of new alloys obt ained using 
IOSO algorithm that optimized their chemical compos itions.
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An example of multi-objective design 

optimization of Ni-based steel superalloys



An example of multi-objective design 

optimization of Ni-based steel superalloys



An example of optimization of 

Chemical Concentrations

and 

Thermal Treatment Protocols

Aluminum Alloys
(Al, Cu, Zn, Mg, Mn)(Al, Cu, Zn, Mg, Mn)

Simultaneous Objectives:

- Maximize Stress Corrosion                                                  

Crack Resistance (SCCR) 

- Maximize Tensile Strength

- Maximize Yield Strength



OPTIMIZATION OF Al-Cu-Zn-Mg-Mn ALLOYS FOR MAXIMUM SCCR (P1) AND 

MAXIMUM TENSILE STRENGTH (P2) BY DETERMINING PROPER CONCENTRATIONS OF 

Cu, Zn, Mg, Mn AND TEMPER PROTOCOL



OPTIMIZATION OF Al-Cu-Cn-Mg-Mn ALLOYS FOR MAXIMUM SCCR (P1) AND 

MAXIMUM YIELD STRENGTH (P3) BY DETERMINING PROPER CONCENTRATIONS OF 

Cu, Zn, Mg, Mn AND TEMPER PROTOCOL



INVERSE DESIGN OF ALLOYS
FOR A DESIRED (SPECIFIED):

STRESS LEVEL, 

TEMPERATURE LEVEL, 

LIFE EXPECTANCY

OF A MACHINE PART. OF A MACHINE PART. 

Task:

DETERMINE CONCENTRATIONS OF EACH OF THE ALLOYING 

ELEMENTS IN AN ALLOY. 

ACTUALLY, PROVIDE SEVERAL SUCH ALLOYS SO THAT THE 

DESIGNER CAN CHOOSE AMONG THEM THE ONE WHICH IS THE 

CHEAPEST AND MOST OBTAINABLE AT THE TIME OF NEED.





Example of an inverse problem of finding chemical 
composition 

of an alloy with specified properties
(Problem # 8 )

Purpose: Determine chemical composition of an alloy for specified properties of 
material by using an existing database 

Problem features:

variable parameters: chemical composition of the alloy 

C, S, P, Cr, Ni, Mn, Si, Mo, Co, Cb, W, Sn, Zn, Ti ( 14 variables).

criteria: (multi - objective statement – 10 simultaneous objectives)criteria: (multi - objective statement – 10 simultaneous objectives)

•Specified stress (PSI)                                        (PSI-PSI req.)**2 –> minimize 

•Specified operating temperature (T) (T-T req.)**2 –> minimize

•Specified time to "survive" until rupture (Hours)    (Hours-Hours req.)**2 –> 

minimize

ALLOY COST MINIMIZATION:

Cr -> minimize;   Ni->minimize;   Mo->minimize;  Co->minimize;  Cb >minimize;

W >minimize;     Sn >minimize;   Zn >minimize;   Ti >minimize;

constraints: none

mathematical model: have none; use an existing experimental database 





Multicriteria optimization of material composition 

for preset properties (inverse problem) using method #3

Number of variables: 14.

Criteria: Cr and Ni concentration.

40

50 Constraints: 

stress=4000 psi; 

temperature=1800 F; 

time=preset time.

This approach allows us to 

vary the chemical

composition for the

same properties  !
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Number of variables (alloying elements): 14.

Criteria: determine Cr and Ni concentrations.

Constraints:

Stress=4000 

Temperature=1800

Time=5000.
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Multi-criteria optimization of material composition 

for preset properties (inverse problem)
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Operating temperature > 1825 F Hours > 1500
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Inverse Design ProblemInverse Design Problem

Structural Structural multimulti--criteria optimization of material composition for criteria optimization of material composition for 

preset preset propertiesproperties

C S P Mn Si Cu Mo

0.529 none 0.02 1.21 none none 0.065

0.329 none 0.014 0.894 none none 0.06128

32

Example of preset properties: Stress=4000, Temp.=1800, Time=6000;

Criteria: determine Cr and Ni concentrations.

10 components

9 components
0.527 none none 1.21 none 0.018 0.021

0.506 none none 0.879 none none 0.053

0.457 none none 0.977 none none 0.013

Pb Co Cb W Sn Al Zn Ti

0.005 0.003 1.344 0.199 none 0.067 0.001 0.014

0.004 none 1.026 0.188 none 0.074 0.004 0.048

none none none 0.281 none 0.074 0.001 0.032

0.005 0.043 0.839 0.37 none 0.034 0.009 0.001

0.003 none 1.367 0.476 none 0.073 0.003 0.059
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So, What Exactly is Being Proposed Here?
We propose a novel methodology for predicting the 
concentration of each of the important alloying elements in 
magnetic alloys so that the new alloys will have 
simultaneously maximized:

� magnetic remanence (Br) over a range between room 
temperature and Curie temperature

� intrinsic coercive field (jHc) over a range between room 
temperature and Curie temperature 

� energy density (BH ) over a range between room � energy density (BHmax) over a range between room 
temperature and Curie temperature

� Curie temperature

� tensile strength over a range between room temperature 
and Curie temperature

while minimizing the concentration of rare earth elements 
and other expensive elements.



� The proposed optimization method is based on 
combining experimentally obtained multiple properties 
of the magnetic alloys (at NCSU) and FIU’s 
sophisticated, multi-objective, hybrid, evolutionary 
optimization algorithm. 

� It utilizes a polynomial form of radial basis functions 
and a self-organizational concept to construct 
multidimensional response surfaces. multidimensional response surfaces. 

� During the iterative computational design process, a 
small set of new magnetic alloys will be periodically 
predicted (optimal concentrations of each of the 
alloying elements in each of them will be predicted), 
manufactured, and experimentally evaluated for their 
multiple physical properties in order to continuously 
verify the accuracy of the entire design methodology.



� The proposed alloy design optimization method, thus, 
will minimize the need for costly and time-consuming 
experimental evaluations of new alloys. 

� This method is capable of exploring alloy 
concentrations that are outside the initial data set, thus 
providing a more economical and robust design tool 
than when using Artificial Neural Networks or Genetic 
Algorithms alone or in their combination. 

� Basic concepts of the proposed method were used by � Basic concepts of the proposed method were used by 
the PI to design H-type steels, Ni-base superalloys, Hf-
base BMGs, Ti-base alloys, and Al-base alloys.

� It was shown to be applicable to design optimization of 
alloys with an arbitrary number of alloying elements 
and has been tested for up to 12 properties that are 
simultaneously extremized.



� In this work, an updated version of the FIU’s Multi-
Objective Hybrid Optimizer (MOHO) will be used. 

� The optimizer utilizes several multi-objective, 
evolutionary optimization algorithms and orchestrates 
the application of these algorithms to multi-objective 
optimization problems, using an automatic internal 
switching algorithm. 

� The switching algorithm is designed to favor those 
search algorithms that quickly improve the Pareto search algorithms that quickly improve the Pareto 
approximation and grades improvements using five 
criteria. 

� A thorough testing of reliability and accuracy of MOHO 
against a number of prominent multi-objective 
optimization algorithms and one hybrid optimizer 
confirmed that MOHO performs reliably and 
accurately.



Concentrations at.% for the initial population of 80 candidate 

alloys, each virtually obtained using Sobol’s quasi-random 

sequence generation algorithm with constraints. 



Multidisciplinary Research is fun!


