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Objectives 

•  Large-scale coherent structures play significant, and often 
dominating role, in many high-speed and high Reynolds 
number flows of interest to the Air Force – the two 
selected problems for study for this project are jet noise 
and shock/boundary layer interactions 

•  The main objectives of the work are to use a tightly 
integrated experimental and computational work: 
–  To develop an in-depth understanding of the nature and role of 

these structures, and 
–  To effectively and efficiently control the structures & the flow 



Outline of Presentation  
•  We have made significant progress in both areas, but 

today’s presentation will focus on jet noise 
•  For Shock/Boundary Layer Interaction work see: 

–  Webb et al. AIAA 2012-2810 & Mullenix and Gaitonde AIAA 
2012-2702  presented in New Orleans 

•  Jet noise experiments 
–  A brief introduction to jet noise control 
–  High speed jets and the role of large-scale structures 

•  Peak far-field noise in baseline (uncontrolled) jet 
•  Impulse and harmonic response of jet 

•  Jet simulations and comparison with experiments  
–  Coherent structures  
–  Near field 

•  Outstanding scientific/research issues 
 



Control Effects on Flow Structures                                 
(M=1.3; ReD=1.07x106; m=±1)   
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Control Effects on Far-Field Noise (ΔOASPL) –                 
(M=1.3; m=3 & TTR = 2)   



Jet Noise Sources 
•  Several sources 

–  Mixing noise in both subsonic and supersonic jets 
–  In addition, could have shock noise &  Mach waves in supersonic jets  
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Far-Field Noise Events 

•  Shallow-angle noise consists of long-lived, intermittent swings 
that are well captured by a Mexican Hat Function 

•  Defined by: events width, δti (with mean of      ), time between 
two events, Ti (with mean of      ), and event amplitude, Ai 
(with mean of ) 
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Experimental Database 
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Experimental Results – First Important Observation 
•  Time-domain reconstruction using only peak noise events 

is used to determine the spectrum 
•  Spectra are well reconstructed for the peak noise 

portions of the low angles across a wide range of 
diameters, acoustic Mach numbers, and temperatures 
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Experimental Results – Second Important Observation 

•  The mean time between two noise events (    ) at 
30° is a good predictor of the peak spectral frequency 
in cold jets of any Mach number or nozzle diameter 
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Experimental Results – Third Important Observation 
•  The mean width (   ) and mean time between events (    ) 

are strongly correlated - relationship is consistent 
regardless of jet diameter, velocity, or temperature. 

•  Frequency of occurrence of noise sources/events and their 
duration are much more organized than flow structures 

0.128t Tδ ≈ Δ



Impulse Response of Jet - Phase Averaging Process 
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Wave Pressure (Vortex Ring Signature): Impulse Response 
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Impulse Response – Streamwise Evolution of Vortex Rings 

•  Linear increase of Tpp (temporal scale of impulse response) 
mirrors 1/StD

max of unforced jet 
•  Further confirmation that each impulse is seeding a large 

scale structure that develops as in unforced jet 
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Impulse & Harmonic Response 

•  Seeded vortex rings do not interact at low StDF’s - impulse 
response 

•  Beyond StDF ~ StD
max, the interaction manifests in reducing Tpp – 

quasi-linear interaction 
•  StDF x (TppUj/D) ≈ 0.5 in harmonic response (sinusoidal symmetry) 

– beyond which we get non-linear interaction 
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Future Work on Jet Noise  

•  We have developed a tool to thoroughly investigate, in a 
well controlled environment, the flow field, irrotational 
near-field, and far-field of 
–  A single vortex ring (of various kind),  
–  Quasi-linear interacting vortex rings (of various kind), and 
–  Non-linearly interacting vortex rings (of various kind) 



Outstanding Scientific Research Issues  

•  Jet noise 
–  Dynamics of large scale structures and their relation to jet 

noise 
–  Effective control of jet noise 

•  Shock/boundary layer interaction 
–  Mechanism and structure of low frequency oscillations in 

the interaction region 


