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Gas Surface Interaction Modeling (Motivation) 
•  Existing models for oxidation and catalysis exhibit large variations 
•  Precise mechanisms can not be inferred from experiment alone 
•  MURI team seeks to bridge physical chemistry ßà  macroscopic rates 

Rate data for C(s) + O2 à CO2 on carbon and 
popular curve-fits used in current models. 

Oxygen recombination efficiencies on RCG 
(silica-based) tiles, taken from: 
Stewart, D.A., “Surface Catalysis and Characterization 
of Proposed Candidate TPS for Access-to-Space 
Vehicles”, NASA Technical Memorandum 112206, July 
1997, Ames Research Center. 
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Finite-Rate Models for Gas-Surface Chemistry 
•  Surface reactions now modeled similar to gas-phase; this is required for 

nonequilibrium vehicle trajectories 
•  Surface catalysis chosen as a preliminary study (now complete) 
•  US3D – DPLR code-code validation complete; finite rate model naturally 

results in temperature and pressure-dependent catalytic efficiency 

•  Model requires activation energies and steric factors for each rate 
(parameters are now directly linked to physical chemistry) 

•  What are the mechanisms? What are their rate parameters? 
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Atomistic Simulation of Real Silica Surfaces 
•  Silica is a main component in non-ablative/ablative TPS and SiO2 oxide 

layers form on many TPS materials (i.e. SiC and UHTCs) 
•  Start with the state-of-the-art ReaxFFSiO interatomic potential [1] 
•  Experimental validation of ReaxFFSiO with bulk silica polymorphs [2], surface 

reconstructions [3], and amorphous structure (a-SiO2) [4] 

[1] A. van Duin et al., “ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems”, J. Phys. Chem. A, I07, 
pp. 3803-3811, 2003. 
[2] T.  Demuth et al.  J. Phys: Condensed Matter, 1999. 
[3] Y. Chen et al. Applied Physics Letters. 93, pp. 181911, 2008. 
[4] Susman, S. et al., Physical Review B., Vol. 43, No. 13, 1991. 
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In-situ Surface Structure 
•  What are the precise chemical structures on realistic silica surfaces that gas-

phase O and O2 interact with under hypersonic conditions? 
•  Proper investigation requires multi-disciplinary collaboration (MURI) 

Collaborative/Iterative Procedure: 

•  Validate predicted amorphous SiO2 
structure with experiment (stable 
reconstructions and defect structures 
observed) 
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•  Validate predicted amorphous SiO2 
structure with experiment (stable 
reconstructions and defect structures 
observed) 

•  Simulate exposure to dissociated oxygen 
at high temperature, observe in-situ 
surface structure and chemical defects 

•  Surface is largely non-catalytic (stable reconstructions) 
•  “Active sites” are defects where recombination is 

energetically favorable (focus on these) 

The ≡Si· and ≡Si-O· defects have been observed experimentally on vacuum fractured and irradiated 
silica surfaces, and by MD simulations of silica surfaces with different interatomic potentials 
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•  Original ReaxFFSiO was trained to DFT data for bulk silica, not specific 
defects, and not for gas-surface interactions 

•  Don Truhlar’s group (Department of Chemistry, Minnesota) performed 
quantum chemistry calculations for all relevant surface reconstructions, 
defects, and oxygen-surface interactions 

A New ReaxFFSiO-GSI for Gas Surface Interactions 

•  Minnesota M06-L and 
M06-2X functionals  

•  Explicity correlated 
CCSD(T)-F12 method 

•  Various cluster sizes 

•  Potential energy 
curves computed for 
Singlet/Triplet and 
Doublet/Quartet spin 
states 
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•  An extensive Density Functional Theory (DFT) study was performed for 
dominant mechanisms (i.e. specific defects and reaction pathways) 

•  A new potential (ReaxFFSiO-GSI) was fit to DFT data 

A New ReaxFFSiO-GSI for Gas Surface Interactions 

strong O binding on reconstructed surface 

energy barrier for O2 desorption  
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•  Result: A single FF that accurately models bulk SiO2 polymorphs, surface 
reconstructions, and all catalytic defects; validated with experiment. Also, 
specific oxygen-silica interactions, reaction pathways, consistent with DFT. 

A New ReaxFFSiO-GSI for Gas Surface Interactions 

The 3rd dominant defect 
is altered with new FF. 
There is experimental 

evidence for this defect 
on mechanically fractured 

silica [1]. 

[1] A. P. Legrand, The Properties of Silica Surfaces, 1998 

•  Surface structure and defects at high temperature, well modeled by 
ReaxFFSiO-GSI (fit to lowest potential energy surface) 

 

•  Precise, quantitative analysis of oxygen (O/O2) interactions with 
reconstructed surface and defects, is quite challenging: 

-  which PES should be used for trajectories? Singlet, Triplet, Doublet, Quartet? 
-  how precisely must ReaxFF fit the DFT data? 
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•  A large number of trajectory calculations were performed to determine 
activation energies and steric factors for each reaction mechanism 

r2 = Fkinasite[S] ΘoA2e
−Ea2 /kBT

Probability of 
hitting a site 

Probability site is occupied by reactant 

Probability of reacting 

(s-1m-2) 

Ex. Trajectories 
well-fit by: 

Ea2 = 0.15 eV 
A2 = 0.850 

Flux to surface 

Concentration of 
surface sites 

Gas-Surface Trajectory Analysis 
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A CFD rate model for oxygen-silica catalysis consistent with physical chemistry: 

Macroscopic Rate Model for CFD 

Slope is very sensitive to energy barriers, 
ongoing (non-MURI) work to address this. 
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Carbon Oxidation Results 
Highly Oriented Pyrolitic Graphite (HOPG) 
(Images from Corral et al.): 
 
 
  

HOPG is a well-characterized, carbon-
based material, ideal for bridging 
computational chemistry to macroscopic 
oxidation experiments. 
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Molecular Beam Experiments (O à HOPG) 
•  HOPG is a well-characterized material and 

Molecular Beam experiments have a well 
characterized environment 

•  ReaxFFCHO is available and validated for 
hydrocarbon chemistry [1] 

•  Revisit existing experiments (Minton) and 
DFT calculations (Paci et al.) for 
hyperthermal (5eV) O impacts on HOPG [2] 

[1] van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A., J. Phys. Chem. A, 2001, 105, 9396 
[2] Paci, J.T., Upadhyaya, H.P., Zhang J., Schatz G.C., Minton, T.K., J. Phys. Chem. A, 2009, 113, 4677 
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•  Breakup of a 2-layer graphene stack in AB arrangement proceeds 
via epoxide formation on the top layer, AB to AA conversion, defect 
formation/expansion in top layer, and finally defect formation/
expansion in the bottom layer [1] 
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ReaxFF Simulation Results vs. DFT 

[1] Srinivasan, S. G. and van Duin, A. C. T., 2011. Journal of Physical Chemistry A 115, 13269-13280. 
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•  Our results in terms of the number of reactive events compared well 
with DFT results of Paci et al1. 

   
Reaction 

Model I Model II Model III Model IV 

DFT ReaxFF DFT ReaxFF DFT ReaxFF DFT ReaxFF 

O1 O3   O1 O3   O1 O3   O1 O3   

Ring Opening 36 32 16 9 17 26 9 16 13 0 0 0 

Epoxide 
Formation 

76 75 94 77 70 88 33 29 57 7 17 19 

Epoxide Migration 37 21 3 34 46 0 11 20 17 21 17 25 

Carbonyl 
Formation 

3 2 2 1 0 3 0 0 15 0 0 14 

O2 Formation 1 0 2 17 17 2 55 53 20 79 76 72 

CO2 Formation 0 0 0 1 3 2 2 1 6 0 0 6 

CO Formation 0 - 0 1 - 0 6 - 1 0 - 0 

Dioxirane 
Formation 

0 0 0 2 0 0 1 1 0 0 0 0 

Inelastic O 0 0 0 1 7 2 1 13 11 0 4 0 

Sheet Damage 0 0 1 0 0 0 0 0 4 3 2 14 

O1 – Oxygen atom trajectories run on lowest energy singlet PES 
O3 – Oxygen atom trajectories run on lowest energy triplet PES  
1 Paci, J.T., Upadhyaya, H.P., Zhang J., Schatz G.C., Minton, T.K., J. Phys. Chem. A, 2009, 113, 4677 

ReaxFF Simulation Results vs. DFT 
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Experimental results for Highly Oriented 
Pyrolitic Graphite (HOPG) oxidized by 
molecular beam (Minton et al.):  

Same behavior: Oxidation proceeds 
rapidly on graphene edges. 
Forms shallow, but wide etch-pits. 

Molecular dynamics simulation results 
matching molecular beam conditions. 

ReaxFF Simulation vs. Experiment 
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Excellent qualitative agreement with 
experiment, despite disparate 
spatial and temporal scales.  

ReaxFF Simulation vs. Experiment 
•  Interested in steady-state oxidation behavior (beam operates for minutes) 
•  1000 sequential collisions [26 CO, 98 CO2, 198 O2 recombinations] 

- CO2/CO: (~4 sim. vs. ~2 experiment) 
- O2 recombination large in both experiment and simulation 
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Future Oxidation Research 
•  New molecular beam experiments (with matching simulations) at various beam 

energies and high surface temperature (HOPG) 
•  Test a range of materials (in multiple facilities: MB, TGA furnace, LENS-XX) 

- HOPG, graphite, fiber-preform, carbon-carbon, polycrystalline graphite 
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Is fundamental surface chemistry the same for these materials? 
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