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Hypersonic Vehicle Analysis


Surface Processes �
- accommodation, ablation         
  (oxidation, sublimation), 
   catalysis, melting, etc. 
-  coefficients, surface chemistry  
  mechanism and rates 

Gas Phase

-  strong shocks,  
  thermochemical                    
  nonequilibrium, 
  boundary layer, etc. 
-  CFD, relaxation times, 
   Arrhenius rate 
   coefficients with two-         
   temperature model 

Material Response

-  heat conduction, radiative  
  emission, internal chemical 
  reactions (pyrolysis), gas flow   
  through porous media, etc. 
-  thermal response model, physical 
  properties of complex materials  
  (conductivity, emissivity…) 



3 

Project Goals 

•  Nonequilibrium gas-phase processes: 
− use computational chemistry and Master Equation analysis 

to perform detailed studies of: 
•  thermal relaxation processes (T-R-V) 
•  chemical processes (dissociation, exchange) 

− develop reduced order models for use in CFD 

•  Nonequilibrium gas-surface processes: 
–  use coupled CFD-surface chemistry-material response 

tools to study gas-surface interactions (e.g., catalysis, 
ablation) 

–  assess models using experimental data (flow and surface) 
generated in high-enthalpy facility (Fletcher, Univ. Vermont) 
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Gas Phase Studies: 
Technical Approach 

•  State-to-state transition cross sections and rate coefficients: 
–  compute data for all ro–vibrational states, e.g. using QCT 
–  reduce the number of state-to-state transition rates evaluated 

using a response surface design technique (Kriging) 

•  Master Equation (ME) analysis of thermochemical relaxation: 
–  constructed using complete sets of state-resolved transition 

rates for bound-bound and bound-free processes 
–  compare results with existing measurements 
–  use results to develop reduced-order thermochemistry 

models that can be implemented in CFD 
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Results: 
Bound-Bound H2 Transitions 

State-to-state cross sections obtained using response surface design method
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Results: 
Bound-Bound H2 Transitions 

State-to-state cross sections 
obtained using response 
surface design method 
calibrated using a small 
number of QCT evaluations 
(1,800 instead of 60,000!)
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•  Global relaxation parameters 
of the rotational and vibrational 
modes for H2+H2  

•  Rotational and vibrational 
relaxation times become 
similar at high temperature 

•  Technical details: Kim & Boyd, 
AIAA-2012-0362, Jan. 2012. 

Results: 
H2 Thermal Relaxation 
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Analysis of N2-N: 
Heat Bath Studies 

•  State-to-state transition cross sections and rate coefficients: 

–  use database of cross sections computed by Jaffe et al, NASA ARC 
–  ME analysis involves solution of 9,390 equations 
–  technical details: Kim & Boyd, AIAA-2012-2991, June 2012 
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Analysis of N2-N: 
Shock Tube Studies 

•  One-dimensional flow equations combined with Master Equation: 

–  N2-N2 included macroscopically using standard models 
–  applied to experiment of AVCO / Sharma 
–  technical details: Kim & Boyd, AIAA-2012-2991, June 2012 
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Gas-Surface Interactions: 
Assessment of Computations 

•  Collaboration with Prof. 
Doug Fletcher (UVM): 
–  30 kW Inductively Coupled 

Plasma (ICP) Torch Facility 

•  Samples exposed to high 
enthalpy gas flows 

•  Flow quantities measured 
using two-photon LIF: 
–  N-atom number density 
–  translational temperature 

•  Surface temperature and 
sample ablation also 
quantified 

Graphite sample in nitrogen flow  
(section in box is the portion simulated) 

Source: Prof. D.G. Fletcher 
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Gas-Surface Interactions: 
Conditions Investigated 

Free Stream: 
Mass flow rate 

[kg/s] 
Temperature  

T∞ [K] 
Pressure 

[kPa] 
Wall temperature 

 Tw [K]  

0.001 5133 12 1590 

Progress:  subsonic inlet/outlet BCs added to LeMANS 
  sensitivity to various thermochemistry models 

Mach number Translational temperature 
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Gas-Surface Interactions: 
Comparisons with Experiment 

Translational temperature Relative N-atom density 

Comparisons along the stagnation streamline 
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Future Plans 

•  Nonequilibrium gas-phase processes: 
–  develop T-R-V relaxation models for CFD from ME results 
–  high fidelity CFD chemical reaction models including rotational 

mode will also be developed from ME analysis 
–  continue analysis for other important air interactions 
–  evaluation using existing experimental data sets 

•  Nonequilibrium gas-surface processes: 
–  compare surface chemistry models (catalytic recombination, finite 

rate chemistry module of MacLean & Marschall) 
–  model surface recession (material response code: MOPAR) 
–  study sensitivity to gas-thermochemistry rates and models 
–  assess modeling using Univ. Vermont experimental 

measurements of flow field properties and sample mass loss 
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Technical Challenges 

•  Nonequilibrium gas-phase processes: 
–  large number of different air species interactions (N2-M, O2-

M, NO-M, etc.) 
–  fidelity required from computational chemistry? 
–  Master Equation analysis becoming expensive 
–  lack of modern, validation quality, experimental data 

•  Nonequilibrium gas-surface processes: 
–  isolating contributions of competing mechanisms to effects 

observed (e.g. flow processes, catalysis, ablation) 
–  uncertainties in facility operation (e.g. ICP exit conditions) 
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Technical Approach: 
Computational Tools 

•  LeMANS 
      (Scalabrin and Boyd: AIAA-2006-3773) 

–  Navier-Stokes CFD code 
–  finite volume FVS 
–  implicit time integration  
     (point/line) 
–  2D/3D unstructured mesh 
–  parallel, domain 

decomposition 
–  finite rate thermo-chemical 

nonequilibrium effects 
–  validated for hypersonic flow 

using experiments, codes 

•  MOPAR 
      (Martin and Boyd: AIAA-2009-3597) 

–  material response code 
–  control volume finite element 

(CVFEM)  
–  quasi-1D 
–  pyrolyzing/non-pyrolyzing 

ablators 
–  momentum conservation 

through Darcy’s Law (or 
Forcheimer’s Law) 

–  moving boundaries 
–  has been coupled to LeMANS 
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Results:  
Surface Properties 

Diffusive heat flux Total heat flux 

Total Heat flux = (Translational + Vibrational) 
                           convective heat flux +  
                           Diffusive heat flux 
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