CB

Experimental Studies of Shock Wave
Boundary Layer Interaction in Laminar and
Turbulent Hypervelocity Flows to Evaluate

Models of Air Chemistry and Turbulence

AFOSR/NASA Review
July 2012

Michael S. Holden
Timothy Wadhams
Matthew MaclLean



@I Outline of Presentation

* Experimental Test Cases from Earlier and Current Studies and

Comparison with RANS Solutions to Examine Modeling of
Turbulence in RANS and DES/LES Solutions for Regions of
SWTurbulentBLI at Mach numbers from 4 to 8 at flight Total
Enthalpies and Reynolds numbers.( New Test Cases to be
Presented at January 2013 AIAA Meeting )

Measurements , Model Configurations and Test Conditions from
Experimental Studies of SWLaminarBLI Conducted in LENS | and
XX Tunnels at Total Enthalpies from 5Mj/kg to 18Mj/kg. to
Evaluate the Models of Air Chemistry and Flow/Surface
Interaction Employed in Navier-Stokes Computations. .( New
Test Cases to be Presented at January 2013 AIAA Meeting )



@ Shock Wave Transitional/Turbulent Boundary Layer

Interactions on Control Surface Heating and Performance to
Slender Hypervelocity Vehicles ( t.cirnple FITV-2)

é'ggi’g’n Shock Interaction 1 Key |ssues for Vehicle Design

« Heating and control characteristics of
transitional/turbulent interactions
* Modeling turbulence in transitional/
turbulent unsteady 3D interaction
regions
» Gross unsteadiness of transitional
Interaction regions
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Shock Wave /Turbulent Boundary Layer Interactions in Inlet and

Combustor Sections of Mach 4 to 7 Scramjet Engines —~. /zjor
raccor in £ngineg Operanilicy and Performance ( exarmple- 31])
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@ Model Configurations Employed in Earlier
CUBRC Studies of SWTBLI

Large Cone/Flare Model 7” HIFIRE Cone



Serious Questions on the Accuracy of Turbulence Models in Prediction of

Heating in Transitional and Turbulent hypervelocity Flow ° Cone M=10
Flight Enthalpy Measurements s

U, P (kg/ T, N°§e
Run Mach (Ms) m) (K P
19 10 2845 012 205 2.5
20 10 2850 012 205  Sharp

8-ft, 7 cone installed in LENS | for studies at
Mach 10 Flight conditions studies

Questions remain in modeling constant pressure high enthalpy turbulent boundary
layers. |
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Heat Transfer Measurements in Transitional and
Turbulent Flows Over HIFIRE 7° Cone at Duplicated

Mach 6.5 and 7.2 Flight Conditions

U, (m/ P (kgl/ T Nose radius

Run Mach 5) m3) (k'; (mm)
4 6.5 1925 0.125 213 2.5
5 7.2 2185 0.070 232 2.5
6 7.2 2185 0.071 231 5.0
8 6.5 1930 0.126 214 5.0

There remain questions on modeling turbulent flow upstream of interaction regions.
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@ Kimmel' s Comparisons Between CUBRC and

NASA Measurements with Flight Data-
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Strong Mach Number Effects Make These Comparisons of Questionable
Value—Measurements are Required at duplicated Flight Conditions Flight



@ Hi-Fire Flare Heating Prediction with Wilcox Modified

Reynolds Stress Limiter, C,,,=0.90

Original SST Modified C ;y=0.90
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* Adjusting stress limiter coefficient on SST model provides
qualitative agreement with surface measurements.



Comparison Between DPLR Predictions with modified SST
turbulence Model | for Mach 8 - | | Wedge-Induced and
Shock- Induced Separated Flow =) |ot to Good Agremernt
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Heat Transfer and Pressure Measurements in SWTBLI on Original Large 6
degree Cone 42 Degree Flare at M=11,13 ~.2:in not good agrezrmenc ac

Duplicaced rligne Conditions and Yenicle Size

Heat Transfer (BTU/ft*2-sec)

Test M, Relft T,K Flare
Condition angle
4 | 4E6 65 42°
6 13 4E6 65 42°
7 13 4E6 65 36°
8 I 4E6 65 36°
Run 4 Heat Transfer and Pressure
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I J£'// Measurements in SWTBLI over New Large Cone-Flare
Model at Mach 5, 6, 7 and 8 at Cold Floyy and Matched Flizfie

.
P 43 ) ¥ -
crcnaloy for "Blind Code-Evaluation Test Cas

Test Condition M, Re/ft TR Turning angle
I 5 7.5E7 100 37°
2 5 |.OE7 400 37°
3 6 3.2E7 100 37°
4 6 4.0E6 427 37°
5 7 |.5E7 100 37°
6 7 2.0E6 416 37°
7° Cone Flare Heat Transfer Distribution 7 8 8E6 100 37°
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I J£'// Measurements of SWTBI on Large Hollow Cylinder-Flare in High
@eynolds Number and Tripped Turbulent Flows at Mach 3, 6, 7 and 8 at

Cold Floys and Matched Flight Enthalpy for “Elind” Codz-Evaluation Test

Cases,
Test Condition M, Re/ft TR Turning angle Test Condition M, Re/ft T.,R Turning angle
I 5 7.5E7 100 37° 5 7 |.5E7 100 37°
2 5 |.0E7 400 37° 6 7 2.0E6 416 37°
3 6 3.2E7 100 37° 7 8 8E6 100 37°
4 6 4.0E6 427 37° 8 8 0.9E6 420 37°
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Turbulent Boundary Layer Upstream of Interaction



Non-Equilibrium Air and Ablation Chemistry on Shock

Layer Properties and Regions of Shock Wave /L :rrirar
Boundary Layer Interaction (SVVLBI)

éf;ﬁ%afyhﬁg;/e r Key Issues for Vehicle Design
Intergétion Region  Flow Chemistry Effects Associated with
Ablation

* Boundary Layer Transition Delay and
Reduced Drag (Game Changing)
 Control Surface Performance

* EM propagation through plasma

* DNS models incorporating flow
chemistry require resources which might

3D Shock/boundary layer Interaction be available in 20 years

Boundary
Layer
Transition

Surface
Ablation

\\_ One of the Empirical Models of Vibration/
S Dissociation Coupling of a Cut-off Harmonic

U2 \\ Oscillator
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Test Points at Total Enthalpies of 10 to 25 M)/kg where Studies
with the new Hollow Cylinder Flare and Double Cone Models

being Conducted in LENS XX

New Models for Upcoming Studies In LENS-XX in N,
and Air
[ 10 MJ/kg — 25 MJ/kg]

o
LENS | BSUV 2 Fire-ll
Mach Numbers
100 - BSUV1 T7to24 : Shuttle Entry
w e
B {LENSI / o Pl
=170 13.5t0 10 ) @ :
3 O 3
s ‘
29507
<401
30 -
207 % To LENS-XX
10 1 umbers RAM-A RAM-B High Velocity
0 T T srm 20 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 1 12 \"

V (kmis)



Old and New Hollow Cylinder/Flare and Double Cone Models
being Employed in Studies of Real Gas Effects on Laminar
Regions of Shockwave/Boundary Layer Interaction




Research Activities leading uDesigned to Develop Accurate

Prediction Flow Chemistry in Hypervelocity Flows
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@ Sﬁectroscopic Emission Measurements in
Shock Layer of Cylinder at 4-7 km/sec
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LENS-XX Test Conditions for New Hollow Cylinder Flare and

Double Cone Models
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Thought Provoking Questions on Shock Wave /

Transitional-Turbulent Boundary Layer Interaction

* Can RANS/DES Calculations be Employed to Capture the Key
Mechanism’ s Associated with Fully Turbulent Separated Regions
Induced by Shock Wave /Turbulent Boundary Layer Interaction.

* What Turbulent Measurements are Required Evaluate Models of
Turbulence Employed in the RANS/DES codes .

* Which instrumentation sets (we are currently developing hot
wires/films and high frequency pitot probes ) can be used to
measure turbulent flow characteristics at velocities from 3,000ft/

sec to 8,000 ft/sec.

*  Which Experimental Configuration Should be used to Provide
Evaluation Measurement for 3D shock Interactions. We are
currently employing the CUBRC Combustion Duct and a Fin/

Cone Model.



@3 Thought-Provoking Questions on Real-gas

Effects

* What are the effects of air/ablation chemistry on shock layer
properties and how do they influence on boundary layer
transition, vehicle stability and control surface effectiveness!?

®* Which chemical species can and should be measured in the
shock layer to provide insight and quantitative observations to
improve models of air chemistry in the CFD codes.

* Which non-intrusive diagnostic instrumentation should be used
or developed to interrogate relevant physical quantities within
the shock layer flow in LENS-XX?

* Which techniques can be used/developed to measure the
parameters controlling gas/surface interaction!?



