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• Double cone/wedge flows are a sensitive model problem

Experiments with “Tunable” Freestream
Double cone/wedge flows are a sensitive model problem 
for thermochemical modeling validation. 

• Significant work both experimentally and computationally 
has been performed (Olejniczak et al. (1999); Wright et al. 
(2000); Nompelis et al (2003 2005 2010))(2000);  Nompelis et al (2003, 2005, 2010)).

• State-of-the-art simulations and experiments show poor 
agreement in high enthalpy ( 5MJ/kg) air flows, in spite 
of good agreement at lower enthalpies and in N2

• Outstanding questions: freestream characterization, flow 
steadiness. thermochemistry.

A novel method of gas acceleration that minimizes free 
stream  dissociation while producing a broad range of 
hypervelocity flows. 
GOAL: Turn on/off  the thermochemistry:

) h l h d1) N2 to air while maintaining Mach and Ho 
2) Low enthalpy to high.  

Quantify the response of viscous and inviscid flow 
f t rfeatures
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Previously:
• Heat transfer & single-shot schlieren data for eight g g

test cases (varying freestream O2 and Ho).
• Flow field establishment and possible unsteadiness 

d llexamined experimentally.  
– Inviscid and viscous time scales measured using high 

speed schlieren and time-resolved heat transfer.p
– Comparisons with simulations (D. Levin) in progress; 

outstanding issues (challenges slide).
C lCurrently:
• Which features of the flow are thermochemically 

activated & when? (Leading to why?!)activated  & when? (Leading to why?!)
– Direct measurements of chemical species and 

temperatures combined with flow feature visualization.
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Hypervelocity Expansion Tube (HET)
152 mm ID 9 14m length impulse facility– 152 mm ID, 9.14m length impulse facility

– Mach Numbers from 3-7.5
– Stagnation enthalpies from 2-9 MJ/kg
– Test times from 100 s to 500 s Dufrene Sharma Austin 2007Test times from 100 s to 500 s

Driver Driven Expansion

Dufrene, Sharma, Austin 2007

Driver Driven Expansion

• Diagnostic capabilities
– Pressure Measurements
– Schlieren (single frame & high speed)

H t t f t– Heat transfer measurements
• Coaxial thermocouple 
• Platinum thin film gauges

– Emission spectroscopyp py
– Pressure Sensitive Paint
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Test conditions and models
• Air can be replaced with N2 and yields nearly the same freestream conditions.p 2 y y
• Two different model geometries are used.

• 25º-55º cone
Run 

Condition M
h0 

MJ/kg T, K
P, 

kPa
,

kg/m3
u, 

km/s
Re/m
*10-6

M7_8 7.14 8.0 710 0.78 0.0038 3.81 0.44

– RTO studies
• 30º-55º wedge

– Scale model of Davis and 
M5_4 5.12 4.2 676 8.2 0.042 2.67 3.47

M4_3.6 3.95 3.6 862 19 0.077 2.33 4.73

M7 2.2 7.11 2.1 191 0.39 0.0071 1.97 1.10

Sturtevant’s wedge

M7_2.2 1.10

25-55 Double Cone d1=0.984”, d2=2.5”30-55 Double Wedge L=2”, b=4”

L
d1

d2

W
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Sample cases showing differences between Air/N2

M5 4M5_4
N2

M5_4
Air

M7_8 M7_8_
N2

_
Air
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Mean Surface Heat Transfer – 8MJ/kg

AirN2
Mach 7

(M7 8)(M7_8)
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High Speed Schlieren: N2 and Air
Ai

Double Wedge
M7_8
Top: Air

Air
• Nitrogen exhibits a larger 

standoff distance = 2.29 Top: Air
Bottom: N2
100,000 fps
7 fps playback
1

mm
• Consequences for shock 

impingement, which 
1s exposure
200 μs test time

N2

occurs further 
downstream for air.

• Nitrogen shows more 
emission
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Triple point establishment process: 
moving upstreamg p
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“Tuning” freestream from N2 to Air
Mach 7, Ho = 8MJ/kg

Percentages indicate the freestream oxygen percentage compared to atmospheric air. 
Compositions below.Compositions below.

(Equilibrium)

Dissociation Fraction (%) = 
[dissociated molecules]/[initial concentration]
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Sample post-shock quantities
f Ovs. freestream O2
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Lead shock location vs O2 content 

Edge tracking extracts shock 
surfaces from high speed 
images.g

Percentages indicate the 
freestream oxygen percentage 
compared to atmospheric aircompared to atmospheric air. 
Compositions below.
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High-Speed Chemiluminescence
Note: images taken during establishment process 

N2

2µs, 
100kHz
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High-Speed Chemiluminescence
Note: images taken during establishment process 

80%
O2
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High-Speed Chemiluminescence
Note: images taken during establishment process 

AIR
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Schlieren & Chemiluminescence overlay

N2
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Note: single shot images after flow established; 
Separate experiments; false color chemiluminescence



Schlieren & Chemiluminescence overlay

80%
O2
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Note: single shot images after flow established; 
Separate experiments; false color chemiluminescence



Schlieren & Chemiluminescence overlay

AIR
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Note: single shot images after flow established; 
Separate experiments; false color chemiluminescence



Quantifying response to increasing freestream O2
170µs170µs

AIRN2
130µs• Reflect observable differences in shock 

configurations and luminescence
• Activity behind reattachment shock affects LActivity behind reattachment shock affects Lsep
(Davis & Sturtevant, N2)
• Activity behind separation shock

• appears to initiate near boundarypp y
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Spectroscopic Setup
• Post bow shock NO emission spectroscopy.

NO b d h UV ( ) d– NO  band in the UV (220-255nm) is interrogated.
– f/4 270M SPEX spectrometer: 43 m slit, 1200 g/mm 

grating, 1.56 A resolution.
– PI-Max 512 ICCD camera.
– 110 s exposure time in highest enthalpy condition on 

h d bl dthe double wedge.

• Spectrometer calibration.
– Fe hollow cathode used for wavelength.

Hamamatsu UV VIS Deuterium lamp used for intensity– Hamamatsu UV-VIS Deuterium lamp used for intensity.

• Optic fiber is used to transmit light.
– Non-negligible losses through the fiber, 

therefore calibration of the fiber istherefore calibration of the fiber is 
performed.

• Guide plate is fabricated via wire EDM 
for spatial alignment of the opticsp g p

– Four holes at 2 mm spacing are drilled 6.1 
mm above the nominal triple point location
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Temperature fitting
• Two codes are used for 

temperature fitting.
• LIFBASE:

• 5 vibrational levels• 5 vibrational levels.
• 80 rotational levels.

• In house code (Sharma 2010):
• 20 vibrational levels
• 250 rotational levels.

• Simulation wavelengths 
interpolated to match 

l dexperimental data.
• Residual minimized to obtain 

vibrational temperature fit.

AIR
Shot 1197 4mm position in house simulation T=7280K

21

Shot 1197, 4mm position, in house simulation, T=7280K.
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Verification behind normal shock

Calculation: 128 species model based on Adamovich
Sh A Gl M AIAA JSharma, Austin, Glumac, Massa, AIAA J, 2010
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Temperature Profiles

0%

4 sampling positions
(kept relative to shock location)
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Comparisons of HET spectral NO data 
with line-by-line spectral simulations 

Simulations by Prof Levin 

Assuming a single internal 
temperature 

Significantly improved fit to 
data with both rotational 
and vibrational 
temperatures included.  



Conclusions
• Data available: Heat transfer and single shot schlieren (AVT 205)• Data available: Heat transfer and single shot schlieren (AVT 205)

Experimental viscous and inviscid establishment times
• Quantification of link between thermochemical activity and gas dynamic flow 

features
Schlieren imaging overlaid with 
- chemiluminescence

(global, qualitative)
- spectroscopic temperature measurements

(point, quantitative)
as a function of freestream O2 content. 

• Transition in shock configurations and temperature measurements identified 
at 80% O2.at 80% O2.

• In air, NO vibrational temperatures well-captured by in-house spectral code 
(Sharma, Austin, Glumac, Massa) 

• Additional spectral fits in collaboration with D. Levin in progress
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Outstanding Challenges

• Installation and operation of Cordin camera for higher 
l f fl bl hresolution imaging of separation zone – flow establishment 

and unsteadiness

• Additional off-centerline data (3D effects?)

S i l l i f i• Spatial resolution of spectroscopic measurements
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