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Experiments with “Tunable” Freestream

e Double cone/wedge flows are a sensitive model problem
for thermochemical modeling validation.

e Significant work both experimentally and computationally
has been performed (Olejniczak ez al. (1999); Wright ez al.
(2000); Nompelis ez 2/ (2003, 2005, 2010)).

e  State-of-the-art simulations and experiments show poor
agreement in high enthalpy (= 5SM]/kg) air flows, in spite

of good agreement at lower enthalpies and in N,

* Outstanding questions: freestream characterization, flow
steadiness. thermochemistry.

A novel method of gas acceleration that minimizes free
stream dissociation while producing a broad range of
hypervelocity flows.
GOAL: Turn on/off the thermochemistry:
1) N2 to air while maintaining Mach and Ho
2) Low enthalpy to high.
Quantify the response of viscous and inviscid flow
features
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Previously:

e Heat transfer & single-shot schlieren data for eight
test cases (varying freestream O, and H ).

* Flow field establishment and possible unsteadiness
examined experimentally.

— Inviscid and viscous time scales measured using high
speed schlieren and time-resolved heat transfer.

— Comparisons with simulations (D. Levin) in progress;
outstanding issues (challenges slide).

Currently:
e Which features of the flow are thermochemically
activated & when? (Leading to why?!)

— Direct measurements of chemical species and
temperatures combined with flow feature visualization.




Hypervelocity Expansion Tube (HET)

— 152 mm ID, 9.14m length impulse facility

— Mach Numbers from 3-7.5

— Stagnation enthalpies from 2-9 M]/kg

— Test times from 100 us to 500 us Dufrene, Sharma, Austin 2007

Driver Driven Expansion

e Diagnostic capabilities
— Pressure Measurements
— Schlieren (single frame & high speed)
— Heat transfer measurements
e Coaxial thermocouple
 Platinum thin film gauges
— Emission spectroscopy

E Pressure Sensitive Paint




Test conditions and models

 Air can be replaced with N, and yields nearly the same freestream conditions.
e Two different model geometries are used.

¢ 25°-55° cone
Run h, P P u, Re/m — RTO studies
.. 3 -6
Condition M MJj/kg | T, K kPa kg/m km/s *10 300-550 we dge

— Scale model of Davis and
M5_4 512 | 4.2 | 676 | 82 0.042 2.67 | 3.47 Sturtevant’s wedge

M4_3.6 3.95 3.6 862 19 0.077 2.33 4.73

M7 8 7.14 8.0 710 0.78 0.0038 3.81 0.44

M7 22 | 711 21 | 191 | 039 | 00071 | 197 | ;10

30-55 Double Wedge L=2", b=4" 25-55 Double Cone d,=0.984", d,=2.5"




Sample cases showing differences between Air/N,




Mean Surface Heat Transter — 8M]/kg
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High Speed Schlier

Double Wedge
M7_8

Top: Air
Bottom: N,
100,000 fps

7 tps playback

1 s exposure
200 ps test time

Alr

en: N2 and Air

T

Nitrogen exhibits a larger
standoff distance = 2.29
mm

Consequences for shock
impingement, which
occurs further
downstream for air.

Nitrogen shows more
emission
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Triple point establishment process:

moving upstream

Transient Shock Profile for M7_2 Nitrogen Test Condition
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Transient Shock Profile for M7_8 Nitrogen Test Condition
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Transient Shock Profile for M7_2 Air Test Condition
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Transient Shock Profile for M7_8 Air Test Condition
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“Tuning” freestream from N2 to Air

Mach 7, Ho = 8M]J/kg

Percentages indicate the freestream oxygen percentage compared to atmospheric air.
Compositions below.

Freestream Post Shock (Equilibrium)
Mixture N, O, N, N 0. 0 NO T.K

Nitrogen 1.000 0.000 | 9.330E-1 6.697E-2 - - - 21TH
30% 0.926 0.074 | 8404E-1 2.320E-2 3.250E-4 1.286E-1 T7.343E-3 4754
50% 0.883 0117 | 7.821E-1 8.753E-3 1978E-3 1.924E-1 147T3E-2 4425
80% 0.825 0.175 | T.057TE-1 2.025E-3 1.47T4E-2 2480E-1 2.949E-2 3990
Air 0.790 0210 | 6.659E-1 1.082E-3 3.152E-2 2.639E-1 3.751E-2 3902

Mixture fa,  fou

Nitrogen 3.46
0%, 1.70 00.5 Dissociation Fraction (%) =
5 {}ii; 1- 18 ga- 1 [dissociated molecules]/[initial concentration]
Pl - 1a -

80% 2.18 904
Air 2,82 817
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Sample post-shock quantities

vs. freestream O,
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Lead shock location vs Oz content

Established Shock Profile for M7_8 Test Condition

80

) 50r
Edge tracking extracts shock
surfaces from high speed
images. 401
Percentages indicate the 300
freestream oxygen percentage =
compared to atmospheric air. = Nitrogen
Compositions below. 20r 30% mixture
50% mixture
10+ 80% mixture
Alr
0 | | | |
0 20 40 60
mm
Freestream Post Shock
Mixture N, O, N, N 0, 0 NO T.K
Nitrogen 1.000 0.000 | 9.330-1 G6.607L-2 N N n 5178
30% 0926 0074 | 8.404E-1 2.320E-2 3.250E-4 1.286E-1 T7.343E-3 4754
50% 0.883 0.117 | 7.821E-1 B8.755E-3 1978E-3 1.924E-1 1A473E-2 44325 12
80Y% 0.825 0175 | 7T.057TE-1  2.025E-3 14T4E-2 2480E-1 2.949E-2 30990
Air 0.790 0210 | 6.659E-1 1.082E-3 3.152E-2 2.639E-1 3.751E-2 3002




High-Speed Chemiluminescence

Note: images taken during establishment process

N2

218,
100kHz
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High-Speed Chemiluminescence

Note: images taken during establishment process

80% L/
02
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High-Speed Chemiluminescence

Note: images taken during establishment process

AIR
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Schlieren & Chemiluminescence overlay

N2

Note: single shot images after flow established,;
ﬂ Separate experiments; false color chemiluminescence



Schlieren & Chemiluminescence overlay

80%
02

Note: single shot images after flow established,;
Separate experiments; false color chemiluminescence




Schlieren & Chemiluminescence overlay
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Note: single shot images after flow established,;
Separate experiments; false color chemiluminescence




Quantitying response to increasing freestream O,

» Reflect observable differences in shock
configurations and luminescence

* Activity behind reattachment shock affects L
(Davis & Sturtevant, N2)

* Activity behind separation shock
e appears to initiate near boundary

sep
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Spectroscopic Setup

e Post bow shock NO emission spectroscopy. B— ansmum"a'ﬂzﬂlrmﬁ o
— NO y band in the UV (220-255nm) is interrogated. \ / '

— f14 270M SPEX spectrometer: 43 um slit, 1200 g/mm
grating, 1.56 A resolution.

— PI-Max 512 ICCD camera.

— 110 ps exposure time in highest enthalpy condition on
the double wedge.

Intensified Camera — J
e Spectrometer calibration.

— Fe hollow cathode used for wavelength.
— Hamamatsu UV-VIS Deuterium lamp used for intensity.

e Optic fiber is used to transmit light.

— Non-negligible losses through the fiber,
therefore calibration of the fiber is
performed.

* Guide plate is fabricated via wire EDM
for spatial alignment of the optics

— Four holes at 2 mm spacing are drilled 6.1
mm above the nominal triple point location
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Temperature fitting

e Two codes are used for
temperature fitting.

e LIFBASE:

e 5 vibrational levels. |
S o Simulated Spectra
e 80 rotatlonal lCVClS. 1 — Experimental Spectra |,
* In house code (Sharma 2010):
[}
e 20 vibrational levels 0 08 A -'" ; :
c A &
e 250 rotational levels. = Al ," * 4 /
© o y .
. . "E 0 6 [ 7 i, /) n
e Simulation wavelengths e | | A y
. 'y I ifll A r‘
interpolated to match 2 e : p ~ A
. c 0.4- [if o
experimental data. £ W i el
4 E' N ,.l"t*"lr"' “‘ PP ‘
Residual minimized to obtain 02l el U i
vibrational temperature fit.
| | | | | |
920 225 230 235 240 245 250 255

Wavelength, nm

AIR
Shot 1197, 4mm position, in house simulation, T=7280K.

NO A?X" 5 X1 21




Verification behind normal shock

— numerical
8000+ & NO
+ OH

T T
fffff Simulated Spectra T
1+ — Experimental Spectra 4500+ +

o
©

0.5 1 1.5 2 25 3 35 4 45 5
Axial Distance {(mm)

o
(=2
=

=
I~

Intensity, arbitrary units

o
]
T

| | | | |
90 225 230 235 240 245 250 255
Wavelength, nm

Calculation: 128 species model based on Adamovich

Sharma, Austin, Glumac, Massa, AIAA ], 2010
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Temperature Profiles

Air, Set 1
Air, Set 2
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Relative u

Comparisons of HET spectral NO data

0.8+

1900 2000 2100 2200 2300 2400 2500 2600 2700

with line-by-line spectral simulations

All T-s 6,000 K

06
0.4

0.2+

0

Wavelength, Angstroms

Relative ul

All T-s 12,00 K

T —12000K T =6,000 K

0.8+
0.6
0.4+

0.2+

0
1900 2600 21‘00 ZZbO ZSbO 24‘00 ZSbO 26‘00 2700

Wavelength, Angstroms

Assuming a single internal
temperature

Simulations by Prof Levin

0
1900 2000 2100 2200 2300 2400 2500 2600 2700
Wavelength, Anstroms

Significantly improved fit to
data with both rotational
and vibrational
temperatures included.



Conclusions
Data available: Heat transfer and single shot schlieren (AVT 205)

Experimental viscous and inviscid establishment times

Quantification of link between thermochemical activity and gas dynamlc flow
features

Schlieren imaging overlaid with
- chemiluminescence
(global, qualitative)
- spectroscopic temperature measurements
(point, quantitative)
as a function of freestream O2 content.

Transition in shock configurations and temperature measurements identified
at 80% O2.

In air, NO vibrational temperatures well-captured by in-house spectral code
(Sharma, Austin, Glumac, Massa)

Additional spectral fits in collaboration with D. Levin in progress
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Outstanding Challenges

Installation and operation of Cordin camera for higher
resolution imaging of separation zone — flow establishment
and unsteadiness

Additional off-centerline data (3D effects?)

Spatial resolution of spectroscopic measurements
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