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Overview!

•  Local versus global fitting: a one-dimensional example"
–  Least squares (LS)"
–  Weighted least squares (WLS)"
–  Local interpolating moving least squares (L-IMLS)"

•  Permutationally invariant local interpolating moving least 
squares (PI-L-IMLS) in six dimensions, for a four-atom system"
–  Generalization of one-dimensional L-IMLS"
–  Key features"

•  Separation of pairwise interaction energy"
•  Permutational invariance in the basis functions"
•  Permutational invariance in the weight functions"
•  Improved efficiency with a cutoff radius correlation"

–  Results for the N4 system"
–  Error statistics"
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One-dimensional fitting!

•  Suppose we have a five-point data set, describing the 
dependence of potential energy on a single coordinate:"

•         are the one-dimensional coordinates!
•         are the exact energies!
•  We will construct a smooth fitting function          that 

approximates this data set."
•  Consider three different approaches of increasing complexity."
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•  Consider a quadratic polynomial:"

"

•  Minimizing the error functional,"

leads to the normal equations,"
"
"
which can be solved for the 
coefficients. ""

The Least Squares (LS) method!

coefficient! basis function!
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•  The fit can be modified by 
introducing weights into the normal 
equations."
–  There are many ways to do this."
–  In one approach, we define the 

weight as a decreasing function 
of distance from a localization 
point.!

!
–  The resulting fit will be highly 

accurate near the localization 
point."

The Weighted Least Squares (WLS) method!

is a function of  
localization point!

scaling factor!
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The Local Interpolating Moving 
Least Squares (L-IMLS) method!

•  A WLS fit can be constructed in this 
way for each point in the data set."
–  This defines a family of local 

fits."
–  Each one fits the entire data set, 

but is especially accurate at its 
localization point."

•  We define a smooth function as a 
weighted average of the local fits:"

local fit i!weight on 
local fit i 

R. Dawes, D. L. Thompson, Y. Guo, A. F. Wagner, and M. Minkoff, J. Chem. Phys. 126, 184108 (2007). 
Y. Guo, I. Tokmakov, D. L. Thompson, A. F. Wagner, and M. Minkoff, J. Chem. Phys. 127, 214106 (2007). 
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L-IMLS – Key features!

•  L-IMLS consists of two distinct steps:"
–  In the construction step, we define a set of normal equations, solve 

them for the local fit coefficients, and store the results."
–  In the evaluation step, we calculate a weighted average of the local 

fits."

•  There are two weight functions in L-IMLS, ω and w."
•  The LS and WLS methods are global methods. L-IMLS is a local 

method.  "
–  In a global method, each data point influences the fitting function 

uniformly."
–  In a local method, the influence of a data point on the fitting function 

may vary with evaluation location."
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Extending the method to six dimensions!

•  A four-atom system has six internal degrees of freedom."

•  To extend L-IMLS to a six-dimensional system, we must:"
1.  Ensure correct asymptotic behavior"
2.  Generalize the basis functions to 6D"
3.  Generalize the weight functions to 6D"
4.  Control computational cost"
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Preliminaries – Distances and Morse variables!

•  How do we specify a four-atom geometry?"
–  Using a mixture of distances and angles is cumbersome."
–  Using the Cartesian coordinates of each of the four atoms introduces 

unnecessary degrees of freedom."
•  The typical starting point for describing a four-atom geometry 

is the six internuclear distances:"

•  Better behaved are the six corresponding Morse variables. "

distance from atom 
#1 to atom #2!

where 

equilibrium N2 bond distance!
scaling factor!
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2N2 → (N4) → N2 + 2N!

•  The N2 potential energy curve 
has been studied extensively."

•  We can model the N2 potential 
with a generalized Morse 
function."

•  If a system exhibits only 
pairwise interactions, then our 
N4 potential must reduce to a 
sum of pairwise potentials.!

•  To guarantee this, we:"
–  Separate pairwise interaction 

energy from the total energy.  "
–  Fit only the remaining “many-

body” component of the 
energy."

"

Generalized 
Morse function 

for the N2 
potential 
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Generalizing the basis functions!

•  General form of a local fit:"

•  Define the basis functions to be monomials in the six coordinates:"

•  It now remains to choose the six coordinates."
•  What would happen if we used the six internuclear distances?"

coefficients! basis functions!

basis function coordinates!
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Permutational symmetry – An introduction!

NOT equivalent !

N1!

N2!

N3!

N4!
1.1 Å!

1.2 Å! 2.0 Å!

1.9 Å!

1.1 Å!

1.9 Å!

N1!

N3!

N2!

N4!
1.1 Å!

1.2 Å! 2.0 Å!

1.9 Å!

1.1 Å!

1.9 Å!
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A permutationally invariant coordinate system!

•  The basis function coordinate system should be 
permutationally invariant:!
–  If one geometry can be obtained by a permutation of the atoms of a 

second geometry, then the two geometries should have identical 
coordinates."

–  The local fits will “inherit” permutational invariance from the coordinate 
system."

•  Define the coordinates as a set of six permutationally invariant 
polynomials in Morse variables."
–  Three polynomials chosen to capture three-body interactions."
–  Three polynomials chosen to capture four-body interactions."
–  As a system approaches a geometry exhibiting only two-body 

interactions, all six polynomials approach zero."
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•  The weight function must be expressed using a six-
dimensional distance metric."

•  We allow the scaling factor R to vary with one of the weight 
function’s inputs."

•  Naïve approach: generalize the usual distance metric used in 
a Cartesian coordinate system:"

Generalizing the weight functions!

One-dimensional weight function!

is a function of  

Six-dimensional weight function!

is a function of  
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•  The naïve approach fails."
•  If one geometry can be obtained by a permutation of the 

atoms of a second geometry, then the six-dimensional 
distance between the two geometries should be zero."

•  A more sophisticated approach:"
–  Consider all 24 (= 4!) possible permutations of the atoms.  "
–  Form a modified power mean of L2 norms, one for each permutation."

Permutational invariance in the distance metric!

permutation function!

BAD!!!
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Controlling computational cost!

•  It is inefficient and unnecessary 
to use all local fits for all cases."
–  We can define the weight 

function so that it decreases 
smoothly to zero, as the weight 
function parameter    
approaches one."

–  The scaling factor R will be 
called the cutoff radius.  If the 
distance to a data point is larger 
than the cutoff radius, then the 
weight on that point is zero."

•  The cutoff radius should depend 
on the density of data points."

Typical weight 
function!

weight function parameter!
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The cutoff radius correlation!

•  The cutoff radius should be 
smaller in higher-density 
regions of space."

•  A cutoff radius correlation 
can be constructed based on 
simple statistical methods:"
–  The density of space is 

correlated to a single 
characteristic coordinate of 
the geometries."

–  The cutoff radius is expressed 
as a polynomial in the 
characteristic coordinate."

•  Typical: 10x reduction in 
number of local fits used in an 
evaluation."

low-density region, 
large cutoff radius!

high-density 
region, small 
cutoff radius!
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Results – Examples of 1D Cuts!

Fixed parameters: 
(Gradient component reported for atom #3) 
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Results – Examples of 1D Cuts!

Fixed parameters: 
(Gradient component reported for atom #3) 
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Results – Examples of 2D Cuts!

Fixed parameters: 
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Results – Error Statistics!

Data subset" # of points" Fitting accuracy" Cross validation"
E < 100" 509" 0.14" 0.21"

100 ≤ E < 228" 1556" 0.33" 0.58"

228 ≤ E < 456" 9202" 0.46" 1.2"

456 ≤ E < 1000" 1542" 2.3" 4.0"

1000 ≤ E! 328" 2.5" 6.8"

All data! 13137! 0.71! 1.5!

PI-L-IMLS mean unsigned error (MUE) statistics.  
All energies in kcal/mol. 
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Next Steps!

•  This is only the beginning.!
•  Presently, we are using the N4 PESs in quasiclassical 

trajectory simulations to determine cross sections and 
reaction rates."
–  Using the ANT code, developed in the Truhlar group"
–  Focus: nitrogen dissociation and vibrational energy exchange at 

extremely high temperatures"
–  Results will serve as inputs to CFD codes and other tools to study 

hypersonic flow phenomena."
•  Further phases of the project:"

–  Excited state electronic structure calculations (already in progress)"
–  Nonadiabatic trajectories"
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Questions?!



Backup!
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Weight functions!

•  One-dimensional L-IMLS:"

"
"
•  Six-dimensional EPI-IMLS:"

where 

where 

Parameters used: 

where 

where 

Parameters used: 
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Basis function coordinate system!
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•  Consider two points in six-dimensional space:"

•  Naïve approach: (BAD)!
"

•  Minimum approach: (BAD)!

•  Modified power mean approach: (GOOD)!

Implementation – A permutationally 
invariant distance metric!

permutation function!

Parameter used: 
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Implementation – The cutoff radius correlation!

•  Characteristic coordinate, in 
terms of Morse variables:"

•  Cutoff radius correlation 
polynomial:"

determined from weighted 
least squares fitting!

Parameter used: 

“target” cutoff radius!

“correlated” cutoff radius!


