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The treatment of combustion and flow processes in a liquid-propellant rocket
engine as a complex system using a confluence of advanced mathematical
methods is aimed to understand and characterize nonlinear triggering, transient
oscillations, and limit-cycle oscillations at supercritical pressures.
o Complex systems involve stochastic behaviors of semi-autonomous
components networked in a way that allows emergent behavior to develop.
o Our complex system components will include combustion chamber,
convergent nozzle, propellant injectors, and all flow and thermal structures.
« Uncertainties that justify stochastic approach relate to magnitude, duration, and
location of triggering disturbances; property values in supercritical domain.
« Stochastic processes may apply to fluctuations in propellant flow rates,
fluctuations in fluid properties, and flow turbulence.
* Emergent structures of interest include large-amplitude acoustic oscillation.
« Stochastic terms may enter analysis as initial conditions, boundary conditions,
or directly into differential equations as forcing functions or coefficients.
e Reduced Basis Modeling (RBM) coupled with LES will provide a rapid,
efficient, and accurate analysis for the intensive stochastic computations.
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TEAM APPROACH

UCI (Sirignano, Sideris, and Popov) will develop stochastic framework. They
will formulate stochastic partial differential equations in coordination with
Georgia Tech and Hypercomp.

Georgia Tech (Menon and postdoc) will develop Large-eddy Simulation (LES)
approach and make computations for specified realizations in the stochastic
behavior.

Hypercomp (Munipalli and Ota) will develop reduced basis models fitting the
LES results. These RBMs will allow inexpensive computations of many
realizations for the stochastic analysis.

KISS (Kassoy) will develop and propose thermoacoustic and
thermomechanical models to describe relevant combustion phenomena. Some
of this modelling will also be done at UCI (Sirignano).

Continuing communication and iteration amongst team members will occur.

The approach and integration of contributions from team members will be
tested on model equations as well as with full Navier-Stokes, multicomponent-
flow based equations.

The approach introduces and integrates various advanced mathematical and
computational method: stochastic processes; asymptotic analysis; large-eddy
simulation; reduced-basis modelling.



Stochastic modeling-Uncertainty quantification

General stochastic PDE: L(x,t, w;u) = f(x,t, w) with u(x, t, w) the
solution, f(x,t, w) a forcing function, £ a (possibly) nonlinear differential
operator, t € [0 T] the time variable, x € D spatial variables, and w € Q
signifying dependence on random quantities.

Polynomial Chaos Expansion (PCE) approximation: u(x,t,w) =
Nowi(x, )®;(Z(w)), with Z = (Zy, ..., Zz) orthornormal RV’s, and the @,
‘s multi-dimensional orthogonal polynomials.
Stochastic Galerkin (SG) approach: u;(x, t), are obtained by requiring
<L(x,t,w; XN ®;), @) > =< f(x,t,0), P, >, k=0,1,...,N,
which is a system of coupled deterministic PDE's in the u;(x,t)’s.
Stochastic Collocation (SC) approach:
" _ ~ 1lyN O . (20D wD  (wi
w;(x,t) = < u(x, t,w), ®;(Z(w)) >= y_Zl-:lu(x, t,w) @;(z) wl), (with
20, j =1,..., M samples (quadrature nodes)) are obtained from the deterministic
PDE’s: L(x,t, wY;uW) = f(x,t, 0)).
Remarks:

— In both the SG and SC methods, the simulation approach of Georgia Tech
and HyPerComp can essentially be used.

— Fromthe PCE expansion, statistics for the solution and machine learning
tools for the detection of triggered instabilities will be developed.



ROM/RBM-LES Strategy
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Previous Experience and Year 1 -Work Plan @ GT

« POD/ROM analysis of existing LES data underway Experiments (CVRC-Purdue)
— LOX-GH2 supercritical jet mixing (PSU) e
— GH2-GOX subcritical instability (Purdue)
— LOX-GCHA4 supercritical combustion (CNRS)
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» Develop post processing tools for on-line and off-line analysis of the LES data
» Team collaboration to provide inputs for stochastic and RBM modelling.



The Reduced Basis Method (RBM) — Scope

The goal of RBM is to generate accurate models of the full governing equations
with far fewer unknowns — without linearization or other approximations. \We are
planning for the following uses for RBM in liquid rocket combustion dynamics:

» Parametric calculations, control, optimization: RBM can be used to span a
large parameter space efficiently in large scale computations (e.g., Re, mass flow
rate, perturbation frequency...) This can be used in designing control laws, and
automatic optimization. Due to the averaging property, POD is inefficient in
multiparameter systems.

» Geometric similarity: To use the RBM with parameterized geometries to
model topologically similar domains efficiently

» Surrogate models in complex systems: RBMs can be used to represent
subsystems such as injectors when interfacing with more complex combustor
models - a network of interoperating RBMs may be used.



Brief Description of the RBM Method

The full system of Favre filtered NS equations in LES: @ +FQ)=Ww
ot

N
Expand Q (Galerkin technique) in terms of modes 1y,  Qggy (X, 1) = ZQR (D, (x)
n=1

The modes v, (usually orthogonal, but not necessarily)
are obtained such that this approximation minimizes |Q(X,t) = Qgau (X, 1) < &
solution error (defined appropriately) :

The coefficients Qg are obtained d Q. (t)
as solutions to 15 order ODEs: — <R~
(A and P are pre-computed matrices)

g AF (P'y, (X)Qr (1)) + W(y,, (X)Q (1))

Calculation is done in two parts — the first, “offline” procedure constructs a set of basis
functions which provide the best representation of computed data.

Next, a set of ODEs are solved “online” where the system is modeled from N unknown modal
coefficients Qg — note the full CFD solution computes O(K) unknown values where K is the
number of cells.

Model reduction implies N << K
Challenges: Determine appropriate modes; Stable, efficient computation of nonlinear fluxes.




KISS Asymptotic Analysis

1. Thermomechanics: Spatially distributed, transient, energy deposition [Q(X,t)] into an
isolated volume (hot spot length scale L and acoustic time scale t,=L/a, a=local
acoustic speed) at a specific rate (heating time scale t,). When t,, <<t, , there must
be a very low Peclet number and is not interesting here (unless radiation dominates).
Much slower energy addition  (t,, >> t,) occurs at nearly constant pressure.
Density decrease causes a small expansion Mach number driving relatively weak
mechanical disturbances into the unheated environment. Conceptual outcome:
System conversion of thermal to kinetic energy provides a source for mechanical
disturbances.

2. Thermoacoustics: Linear 1%t and 2" order, 2D, nonhomogeneous wave equations
describe the response of a confined gas to Q(x,t) when t,=O(t,). Longitudinal and
transverse disturbances can be generated; solutions include a forced response and all
the eigenmodes excited by the heat input. Potential nonlinearization can be derived
analytically from the 2" order, nonhomogeneous wave equation. Some modes can be
iImmediately unstable. Conceptual outcome: Thermoacoustic modeling, describing
hyperbolic phenomena is valid when the heating and the acoustic time scales are
commensurate.




SUMMARY

Innovative approach to explore the triggering mechanism
of the instability and the driving mechanism for the
nonlinear oscillation.

Address the multi-injector rocket combustion chamber as
a complex system with many semi-autonomous
components that affect the nonlinear oscillatory macro-
behavior.

Establish key relations amongst the initiation process,
nonlinear resonant oscillation growth, and transient to
limit-cycle.

The combination of new and emerging methodologies

may not only aid in addressing the liquid-propellant
rocket instability but can have other broader applications.
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