Be Advised: Classified, FOUO, and PII Content is Not Permitted
You are currently reviewing an older revision of this page.
http://sebokwiki.org/wiki/Transitioning_Systems_Engineering_to_a_Model-based_Discipline
Model-based systems engineering (MBSE) is the formalized application of modeling to support system requirements, design, analysis, verification, and validation activities beginning in the conceptual design phase and continuing through development and later life cycle phases (INCOSE 2007). A distinguishing characteristic of a MBSE approach is that the model constitutes a primary artifact of the systems engineering process. The focus on developing, managing and controlling a model of the system is a shift from the traditional document based approach to systems engineering, where the emphasis is on producing and controlling documentation about the system. By leveraging the system model as a primary artifact, MBSE offers the potential to enhance product quality, enhance reuse of the system modeling artifacts, and improve communications among the systems development team. This, in turn, offers the potential to reduce the time and cost to integrate and test the system, and significantly reduce cost, schedule, and risks in fielding a system.
MBSE includes a diverse set of descriptive and analytical models that can be applied throughout the life cycle, and from system of systems (SoS) modeling down to component modeling. Typical models may include descriptive models of the system architecture that are used to specify and design the system, and analytical models to analyze system performance, physical, and other quality characteristics such as reliability, maintainability, safety, and cost.
MBSE has been evolving for many years. The term MBSE was used by Wayne Wymore in his book by this name (Wymore 1993), that provided a state-based formalism for analyzing systems in terms of their input/output characteristics, and value functions for assessing utility of technology independent and technology dependent systems. Simulations have been extensively used across Industry to provide high fidelity performance analysis of complex systems. The Standard for Integration Definition for Function Modeling (IDEF0 1993) was introduced in the 1990’s to support basic functional modeling. A modeling formalism called the enhanced functional flow block diagram (Long 2000) has been used to model many different types of systems. The Object Management Group (OMG) introduced the concept of a Model Driven Architecture (MDA®) (OMG 2003) that leverages a standards-based approach to modeling. The Systems Modeling Language (OMG SysML™) (OMG 2015) was adopted by the OMG in 2006 as a general purpose systems modeling language. In addition, the Unified Profile for DoDAF and MODAF (UPDM) (OMG 2013) was adopted by the OMG in 2008 to support enterprise modeling. Several other domain specific modeling languages have been introduced as well.