http://www.futuretimeline.net/21stcentury/2035.htm#airline-fleet-doubled

 

2035-2040

 

Swarm robotics are reaching the nanometre scale

 

Swarm robotics is a relatively new field, having emerged in the first decade of the 2000s. It is based on the idea of controlling very large numbers of robots simultaneously, in order to perform tasks that an individual machine would be unable to accomplish alone. This is achieved using a combination of miniaturised computers and locomotive systems, ultra-light materials, compact sensors and wireless technologies.

 

Early generations of these robots were comparatively large and bulky, lacking the necessary processing power to engage in any complex activities. Although capable of flight, they were mostly experimental, often bird-sized and relied on heavy components with poor battery life. The technology improved greatly in the 2010s, however, leading to a new era of spy drones the size of insects.** These could mimic the body structure, movements and behaviour of real insects.

 

Over the next two decades, further improvements in AI and remote guidance allowed these machines to operate in increasingly large and capable networks, while at the same time, electronic components were shrinking in size by two orders of magnitude per decade.**

 

Among their most important uses during this time was functioning as artificial pollinators in response to the collapse in honey bee populations.** They could also serve in other environmental roles, such as monitoring the atmosphere, land and water – including urban areas – with unprecedented speed and detail. These devices were also useful in search and rescue missions, helping to improve real-time data acquisition.

 

A more sinister application would be seen in military engagements. By 2030, the machines had been scaled down to match even the smallest known insect, less than 0.15 mm (0.0059") long.** Towards the end of this decade, they are so compact and miniaturised that some variants are now invisible to the naked eye. They can be manufactured in vast networks, numbering in the trillions and together resembling clouds of gas. This effectively is a form of programmable matter, with each "particle" being a robot capable of flight. Released from capsules dropped by UAVs, the swarms perform advanced reconnaissance, coordinate cyber attacks and invade bases – taking down human targets and even disabling large vehicles. Like termites, they use specialised appendages to chew through electronics and mess up defensive equipment, leaving enemies completely vulnerable. Even those in underground bunkers are not safe – the swarms dissolve all but the most heavily reinforced armour and can easily penetrate cracks, keyholes, air vents and the like.**

 

As well as their offensive abilities, nanobots can serve in defensive roles. Floating at low altitude, they can provide cover to advancing ground forces, acting as shields or "buffers" to incoming projectiles, somewhat like the barrage balloons of World War II. They can also coalesce to form temporary structures, like simple bridges to cross a river, stretchers to carry injured personnel, ropes and ladders, and so on.*

 

Adoption of military nanotech has accelerated in recent decades, as nations try to gain the edge in warfare.** Nanobot swarms are the latest and by far the most powerful step in this race. They are classified as weapons of mass destruction by the UN, placing them in the same category as nuclear, chemical and biological weapons. International treaties are subsequently signed, limiting their use. Safety mechanisms are also introduced in order to minimise the potential for adaption.* Self-replicating variants, for example, are flat-out banned, since these could consume the entire biosphere. Fears are growing of a potential terrorist attack (or "grey goo" incident).